• Title/Summary/Keyword: Mineral Potential

Search Result 655, Processing Time 0.025 seconds

GIS-based Metallogenic Prognosis of Lead-Zinc Deposits in China

  • Tang, Panke;Wang, Chunyan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.91-99
    • /
    • 2015
  • In this paper, we introduce the application of several currently-representative methods for mineral resources potential assessment on Geographic information system(hereinafter referred to as GIS), and combined with mineral resources potential assessment performed in China and with lead-zinc deposits taken as an example, summarized and divided minerals prediction and assessment models; on this basis, this paper presented the process of metallogenic prognosis based on MRAS platform, and made a simple analysis on existing problems.

Analysis of Regional Potential Mapping Factors of Metal Deposits using Machine Learning (머신러닝을 이용한 광역 금속 광상 배태 잠재성 평가 인자 분석)

  • Park, Gyesoon
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.3
    • /
    • pp.149-156
    • /
    • 2020
  • The genesis of ore bodies is a very diverse and complex process, and the target depth of mineral exploration increases. These create a need for predictive mineral exploration, which may be facilitated by the advancement of machine learning and geological database. In this study, we confirm that the faults and igneous rocks distributions and magnetic data can be used as input data for potential mapping using deep neural networks. When the input data are constructed with faults, igneous rocks, and magnetic data, we can build a potential mapping model of the metal deposit that has a predictive accuracy greater than 0.9. If detailed geological and geophysical data are obtained, this approach can be applied to the potential mapping on a mine scale. In addition, we confirm that the magnetic data, which provide the distribution of the underground igneous rock, can supplement the limited information from the surface igneous rock distribution. Therefore, rather than simply integrating various data sets, it will be more important to integrate information considering the geological correlation to genesis of minerals.

Quantitative Assessment of Input and Integrated Information in GIS-based Multi-source Spatial Data Integration: A Case Study for Mineral Potential Mapping

  • Kwon, Byung-Doo;Chi, Kwang-Hoon;Lee, Ki-Won;Park, No-Wook
    • Journal of the Korean earth science society
    • /
    • v.25 no.1
    • /
    • pp.10-21
    • /
    • 2004
  • Recently, spatial data integration for geoscientific application has been regarded as an important task of various geoscientific applications of GIS. Although much research has been reported in the literature, quantitative assessment of the spatial interrelationship between input data layers and an integrated layer has not been considered fully and is in the development stage. Regarding this matter, we propose here, methodologies that account for the spatial interrelationship and spatial patterns in the spatial integration task, namely a multi-buffer zone analysis and a statistical analysis based on a contingency table. The main part of our work, the multi-buffer zone analysis, was addressed and applied to reveal the spatial pattern around geological source primitives and statistical analysis was performed to extract information for the assessment of an integrated layer. Mineral potential mapping using multi-source geoscience data sets from Ogdong in Korea was applied to illustrate application of this methodology.

In-situ microbial colonization and its potential contribution on biofilm formation in subsurface sediments

  • Lee, Ji-Hoon;Lee, Bong-Joo;Yun, Uk;Koh, Dong-Chan;Kim, Soo Jin;Han, Dukki;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • Biofilms facilitate communication among microorganisms for nutrients and protect them from predators and harmful chemicals such as antibiotics and detergents. Biofilms can also act as cores for the development of clogs in many agricultural irrigation systems and in porous media. In this study, we deployed glass units at a depth of 20 m below the ground surface in the groundwater-surface water mixing zone, and retrieved them after 4 months to investigate the potential colonization of indigenous microbial community and possible mineral-microbe assemblages. We observed the periodic formation of microbial colonies by fluorescence dye staining and microscopy, and analyzed the composition of the microbial community in both the mineral-microbe aggregates and groundwater, by next generation sequencing of the 16S rRNA gene amplicons using MiSeq platform. During the course of incubation, we observed an increase in both the mineral-microbe aggregates and content of extracellular polymeric substances. Interestingly, the microbial community from the aggregates featured a high abundance of iron redox-related microorganisms such as Geobacter sp., Comamonadaceae sp., and Burkholderiales incertae sedis. Therefore, these microorganisms can potentially produce iron-minerals within the sediment-microbe-associated aggregates, and induce biofilm formation within the groundwater borehole and porous media.

Study of Dielectric Properties of a Potential RBD Palm Oil and RBD Soybean Oil Mixture as Insulating Liquid in Transformer

  • Azmi, Kiasatina;Ahmad, Azmier;Kamarol, Mohamad
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2105-2119
    • /
    • 2015
  • This paper reported the experimental result of dielectric properties of Refined, Bleached and Deodorized Palm Oil (RBDPO) combined with 0-50% of Refined, Bleached and Deodorized Soybean Oil (RBDSO). The dielectric strength and relative permittivity of RBDPO/RBDSO was higher compared to mineral oil at all ranges of ratios and temperatures which indicated a positive sign for its possible use as insulating liquid in a transformer. All ratios of the RBDPO/RBDSO mixture also demonstrated lower dissipation factor compared to mineral oil at 40℃, 70℃ and 90℃. Apart from that, the kinematic viscosity for the oil mixtures shown exceeded the IEC 60296 as well as the mineral oil results. 70%RBDPO/30%RBDSO mixture ratio was chosen as the best mixing percentage after comparison was made with the mineral oil and IEC 60296 standard where the mixture accumulated the most satisfactory of dielectric properties hence making it as the potential candidate for palm and soybean-based transformer oil.

Effects of Natural Mineral Water on Reflux Esophagitis (역류성 식도염에 대한 천연 미네랄 워터의 효과)

  • Choo, Byung-Kil
    • Korean Journal of Organic Agriculture
    • /
    • v.30 no.1
    • /
    • pp.75-87
    • /
    • 2022
  • Reflux esophagitis (RE) is a gastroesophageal reflux disease (GERD) caused by repeated reflux of gastric acid into the esophagus. The present study investigated the protective effect of natural mineral water on esophageal injury induced by gastric acid reflux. The cytotoxicity of mineral water was confirmed using Cell viability, proliferation and cytotoxicity assay kit. The protective effect of mineral water on esophageal injury was investigated in RE rat model. The results showed that no cytotoxicity of mineral water was observed in RAW264.7 cells. Mineral water decreased the ratio of esophageal damage, inhibited the increase of inflammatory-protein expression levels and increased the mucosa protection and tight junction proteins expression level in RE control rat. The results suggest that mineral water may have the potential to protect esophageal damage caused by gastric acid reflux and the potential to alleviate reflux esophagitis.

Nutritional value and antioxidant potential of lemon seed and sprout

  • Park, Yong-Sung;Dhungana, Sanjeev Kumar;Kim, Il-Doo;Shin, Dong-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.6
    • /
    • pp.627-631
    • /
    • 2020
  • High amounts of lemon seeds are discarded as by-products of processing industries. It is important to find some measures, whereby they could be used in value-added ways. Although few studies have been conducted on lemon seed oils, no study has been conducted on the nutrient content of lemon seed sprouts. The objective of this study was to investigate the nutritional value and antioxidant potential of lemon seeds and sprouts. The 1,1-diphenly-2-picrylhydrazyl radical-scavenging potential, total polyphenol, and total free amino acid content were higher in the sprouts than in the seeds. Similarly, the content of such mineral elements as Fe, Na, and Zn, increased with germination. However, salicylic acid and total mineral content were lower in the sprouts than in the seeds. The results indicate that lemon seeds and sprouts could be regarded as high-value materials in food and cosmetic industries.

Potential Antioxidant Trace Mineral (Zn, Mn, Cu and Fe) Concentrations Measured by Biochemical Indices in South Koreans

  • Cho, Young-Eun;Byun, Young-Mee;Kwak, Eun-Hee;Yoon, Jin-Sook;Oh, Hyun-Mee;Kim, Jae-Wang;Shin, Hyun-Soo;Kwon, Chong-Suk;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.374-382
    • /
    • 2004
  • The concern of the antioxidant micronutrient status in normal healthy people, including antioxidant trace minerals such as Cu, Zn, Mn, Fe and Se is focused since systemic oxidation is involved in various chronic diseases. In the present study, we evaluated the concentration of trace minerals (Cu, Zn, Mn, and Fe) which are considered as potential antioxidant minerals in plasma, red blood cells (RBCs) and urine in normal healthy Korean subjects. The 760 subjects (male 341, female 419; mean age 54.2 $\pm$ 18.9) were recruited from the rural, urban and metropolitan city in South Korea. Dietary intake was evaluated using 24-hours recall for general major nutrient intake assessment. The trace elements (Cu, Zn, Mn, and Fe) concentrations in plasma, RBCs, and urine were measured by inductively coupled plasma spectrophotometer (ICP) and atomic absorption spectrophotometer (AAS). Cu and Zn levels in plasma, RBCs and urine in normal healthy South Koreans were within the normal range of those mineral levels, but Mn and Fe levels were higher compared to the normal range of those mineral levels. None of the selected trace mineral levels in plasma and RBC's was lower than the normal range value. The results showed that Zn and Cu levels in plasma and RBC's in Korean were within the normal range, and plasma and urinary Mn and Fe levels were higher than the normal reference values. Potential antioxidant trace mineral (Cu, Mn, Zn and Fe) levels in Koreans are within or a bit higher than the normal range.

Application of Spectral Mixture Analysis to Geological Mapping using LANDSAT 7 ETM+ and ASTER Images: Mineral Potential Mapping of Mongolian Plateau

  • Kim Seung Tae;Lee Kiwon
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.425-427
    • /
    • 2004
  • Motivation of this study is based on these two aspects: geologic uses of ASTER and application scheme of Spectral Mixture Analysis. This study aims at geologic mapping for mineral exploration using ASTER and LANDSAT 7 ETM+ at Mongolian plateau region by SMA. After basic pre-processing such as the normalization, geometric corrections and calibration of reflectance, related to endmembers selection and spectral signature deviation, both methods using spectral library and using PPI(Pixel Purity Index) are performed and compared on a given task. Based on these schemes, SMA is performed using LANDSAT 7 ETM+ and ASTER image. As the results, fraction map showing geologic rock types are enough to meet purposes such as geologic mapping and mineral potential mapping in the case of both uses of these different types of remotely sensed images. It concluded that this approach based on SMA with LANDSAT and ASTER is regarded as one of effective schemes for geologic remote sensing.

  • PDF

A Study on Magnetization of Layered Metal Sulfide for the Removal of Cesium Ions from Aqueous Solution (수중 세슘 제거를 위한 층상 황화 금속 물질 자성화 연구)

  • Chul-Min Chon;Jiwon Park;Jungho Ryu;Jeong-Yun Jang;Dong-Wan Cho
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.4
    • /
    • pp.1-5
    • /
    • 2023
  • In the fabrication of magnetic adsorbent by incorporating iron species on base materials with layered structure, there can be a potential loss of adsorption capacity from the penetration of dissolved iron species into the structure. This work newly synthesized a magnetic adsorbent by incorporating nano magnetite and glucose into layered metal sulfide via hydrothermal treatment, and tested the removal efficiencies of cesium ions (Cs+) by the adsorbents fabricated under different conditions (final temperature and glucose mass ratio). As a result, the optimal fabrication condition was found to be mass ratio of 1 (layered metal sulfide): 0.1 (nano magnetite): 0.4 (glucose) and final temperature of 160℃. As-prepared adsorbent possessed good adsorption ability of Cs+ (54.8 mg/g) without a significant loss of adsorption capacity from attaching glucose and nano magnetite onto the surface.