• Title/Summary/Keyword: Mineral Elements

Search Result 568, Processing Time 0.029 seconds

Effect of Suboptimal Nutritional Status on Mineral Uptake and Carbohydrate Metabolism in Tomato Plants

  • Sung, Jwakyung;Lee, Sangmin;Lee, Suyeon;Kim, Rogyoung;Lee, Yejin;Yun, Hongbae;Ha, Sangkeun;Song, Beomheon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.5
    • /
    • pp.351-358
    • /
    • 2013
  • A suitable supply of mineral elements into shoot via a root system from growth media makes plants favorable growth and yield. The shortage or surplus of minerals directly affects overall physiological reactions to plants and, especially, strongly influences carbohydrate metabolism as a primary response. We have studied mineral uptake and synthesis and translocation of soluble carbohydrates in N, P or K-deficient tomato plants, and examined the interaction between soluble carbohydrates and mineral elements. Four-weeks-old tomato plants were grown in a hydroponic growth container adjusted with suboptimal N ($0.5mmol\;L^{-1}\;Ca(NO_3)2{\cdot}4H_2O$ and $0.5mmol\;L^{-1}\;KNO_3$), P ($0.05mmol\;L^{-1}\;KH_2PO_4$), and K ($0.5mmol\;L^{-1}\;KNO_3$) for 30 days. The deficiency of specific mineral element led to a significant decrease in its concentration and affected the concentration of other elements with increasing treatment period. The appearance of the reduction, however, differed slightly between elements. The ratios of N uptake of each treatment to that in NPK sufficient tomato shoots were 4 (N deficient), 50 (P deficient), and 50% (K deficient). The P uptake ratios were 21 (N deficient), 19 (P deficient), and 28% (K deficient) and K uptake ratios were 11 (N deficient), 46 (P deficient), and 7% (K deficient). The deficiency of mineral elements also influenced on carbohydrate metabolism; soluble sugar and starch was substantially enhanced, especially in N or K deficiency. In conclusion, mineral deficiency leads to an adverse carbohydrate metabolism such as immoderate accumulation and restricted translocation as well as reduced mineral uptake and thus results in the reduced plant growth.

Determination of Mineral and Trace Elements in Ganoderma Lucidum Consumed in China, Vietnam and Korea

  • Nguyen Thi Van;Park Moon-Ki
    • Journal of Environmental Science International
    • /
    • v.16 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • The concentrations of fourteen mineral and trace elements (Al, Ca, Fe, K, Mg, Se, Ba, Co, Cu, V, Pb, Hg, Cd and As) were determined in Ganoderma Lucidum and their infusions consumed for medical purposes collected from Vietnam, China and some places in Korea. Concentrated acid digestion procedure was applied under optimized conditions for dissolution of these medicinal fungi. Element concentrations in these fungi and their in-fusions were then determined by ICP-AES. The mineral and trace element content of these samples and their in-fusions showed a wide variability However, distribution of some elements in the infusions is not high.

Serpentine Pretreatment Using Electrolyzed Reduced Water for Mineral Carbonation Materials (전해환원수를 이용한 탄산염 광물화 원료용 사문석의 전처리)

  • Choi, Weon-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.5
    • /
    • pp.447-454
    • /
    • 2009
  • Electrolyzed reduced water was known as an alkaline solvent than piped water, natural water and mineral water etc. By means of reduction property, electrolyzed reduced water could dissolve a solute than other kinds of water without chemicals. In this study, serpentine dissolution in electrolyzed reduced water was investigated as a novel pre-treatment of serpentine which was a minerals for carbon dioxide sequestration. The elements (Ca, Si, Mg etc.) of serpentine were dissolved rapidly at early in the dissolvation then after some minutes the solubilities of serpentine elements showed stable state without abrupt changes. In spite of serpentine elements dissolution, chemical bondings and crystallographic structure of serpentine were not changed. It was explained that the dissolution mechanism of serpentine occurred from surface in electrolyzed reduced water and bulk structure sustained without collapse.

Study of the organic and mineral composition of living pupae of the wild silkworm Saturnia pyri for use as food additives

  • Shukurova, Zarintac Yusif;Khalilov, Zarbali Murad;Shukurlu, Yusif Hacibala
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.43 no.2
    • /
    • pp.52-58
    • /
    • 2021
  • The article presents the results of the content of the chemical and biochemical composition of the pupa of the wild silkworm Saturnia pyri belonging to the family Saturniidae, species of Lepidoptera. The nutritional value of silkworm Saturnia pyri pupae was evaluated, which contained 51% dry matter, 52.50% crude protein, 27.89% fat, 10.50% chitin fibers, 2.5% ash and 27 macro- and microelements and 25 mg alpha tocopherols in 100 g oil. The X-ray fluorescence method was used to determine the content of mineral elements in the pupa of the silkworm Saturnia pyri. It was revealed that the pupa of this type of silkworm contains 25 elements, of which the relative amount of K, Mg, Na, Ca, Al is much higher than other elements.

Chemistry of Talc Ores in Relation to the Mineral Assemblages in the Yesan-Gongju-Cheongyang Area, Korea (충남 예산-공주-청양 지역 활석광석의 광물조합에 따른 화학적 특징)

  • 김건영;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.10 no.1
    • /
    • pp.60-73
    • /
    • 1997
  • The talc of the Daeheung, Pyeongan, and Cheongdang (Shinyang) talc deposits in the Yesan-Gongju-Cheongyang area is a hydrothermal alteration product of serpentinite originated from ultramafic rocks. The mineral assemblages in alteration zones are: serpentine, serpentine-talc, talc, talc-chlorite, talc-phlogopite-chlorite, and talc-tremolite-chlorite. Chemical distributions in both the Al2O3-FeO-MgO system and the immobile elements suggest that the serpentine-talc and talc rocks are the reaction product of ultramafic rocks and silicic hydrothermal solution without addition of other granitic components, whereas chlorite-, phlogopite-, and tremolite-bearing rocks are the metasomatic alteration product of serpentinite by hydrothermal solution affected by granitic gneiss. Discontinuities in the immobile element ratios of mineral assemblages are due to changes in their mineralogy. The relative contents of Al2O3, TiO2, Zr in the talc-phlogopite-chlorite and talc-tremolite-chlorite rocks increase irregularly with increasing phlogopite, tremolite, and/or chlorite contents in contrast to other ore types. But the relative contents of Cr, Ni, and Co are uniform in all the mineral assemblages. Chemistry of each mineral assemblage formed by steatitization of serpentinite suggests that Cr, Co, Ni, MgO, and Fe2O3 are relatively immobile during the alteration, whereas SiO2, Al2O3, CaO, and K2O are highly increased. The contents of chlorite, phlogopite, and tremolite in each mineral assemblage might be controlled by addition of Al2O3, K2O, and CaO, respectively. The high contents of other elements than immobile elements in the altered rocks as compared with unaltered rocks indicate that a large amount of elements were introduced from hydrothermal solution up to about 8∼41% in total mass showing maximum value in the talc-phlogopite-chlorite rock.

  • PDF

Determination of Mineral Components in the Cultivation Substrates of Edible Mushrooms and Their Uptake into Fruiting Bodies

  • Lee, Chang-Yun;Park, Jeong-Eun;Kim, Bo-Bae;Kim, Sun-Mi;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.37 no.2
    • /
    • pp.109-113
    • /
    • 2009
  • The mineral contents of the cultivation substrates, fruiting bodies of the mushrooms, and the postharvest cultivation substrates were determined in cultivated edible mushrooms Pleurotus eryngii, Flammulina velutipes, and Hypsizigus marmoreus. The major mineral elements both in the cultivation substrates and in the fruiting bodies were K, Mg, Ca, and Na. Potassium was particularly abundant ranging 10${\sim}$13 g/kg in the cultivation substrates and 26${\sim}$30 g/kg in the fruiting bodies. On the contrary, the calcium content in the fruiting bodies was very low despite high concentrations in the cultivation substrates, indicating Ca in the cultivation substrates is in a less bio-available form or the mushrooms do not have efficient Ca uptake channels. Among the minor mineral elements determined in this experiment, Cu, Zn, and Ni showed high percentage of transfer from the cultivation substrates to the fruiting bodies. It is noteworthy that the mineral contents in the postharvest cultivation substrates were not changed significantly which implies that the spent cultivation substrates are nutritionally intact in terms of mineral contents and thus can be recycled as mineral sources and animal feeds.

EFFECTS OF RARE EARTH NITRATE ON INTERNAL ORGANS AND MINERAL ELEMENTS IN THE SERUM OF BROILER CHICKENS

  • Kehe, X.;Tingxian, X.;Jiangwi, Z.;Shilin, D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.63-67
    • /
    • 1992
  • This paper reports the effects of rare earth nitrate (REN) on the growth of internal organs and mineral elements in serums of broiler chickens. The REN used is mixture of light RE containing mainly La, Ce, Pr and Nd 4 elements. 40 eight-week old AA broiler chickens were divided randomly into four groups that their treatments were respectively 0, 20, 200 and 2000 mg REN/kg feed and the duration of the experiment was 60 days. Responses were measured in terms of internal organic weight and tissue, contents of mineral elements in serums. There were no significant differences between the organ ratios and tissue changes of the 20, 200 mg REN/kg groups and the control group. The organs included the heart, liver, kidneys, lungs, testicles, thyroids, adrenal glands, pancreas, tonsies of caecum, stomachus glandularis, duodenum, ileum and bursa of Fabricius. The liver and thyroid indices of 2000 mg REN/kg group were significantly higher than those of the control group (p < 0.01, p < 0.05) and the adrenal gland index lower (p < 0.05). The pathlolgic changes in the heart, kidney and thyroid were more serious than that of the control group. No significant differences occurred between the contents of K, Na, Mg elements in the serum of all groups, with the exception of the content of Ca, which was higher in the 2000 mg/kg group (p < 0.05). The contents of all trace elements including Mn, Zn and Cu, but except Fe, in the serums of all the treated groups were significantly higher than those of the control group (p < 0.01).

Effect of Plant Fibre on the Solubility of Mineral Elements

  • Ibrahim, M.N.M.;Zemmelink, G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1277-1284
    • /
    • 1999
  • Eight feeds and their residues left after washing with tap water (water residue) or incubation in the rumen (rumen residues) were treated with hydrochloric acid, neutral detergent solution without EDTA (NDS) or both, and the release or sorption of minerals (Ca, Mg, P, Na, K, Cu and Zn) assessed. Six of the feeds were from Sri Lanka (Panicum maximum ecotype Guinea A, Glyricidia maculate, Artocarpus heterophyllus (jak leaves), untreated and urea-treated rice straw, and rice bran) and two from the Netherlands (maize silage and wheat straw). The initial concentration of mineral elements, the concentration of neutral detergent fibre (NDF) and the type of feed significantly influenced (p<0.01). The proportion of the mineral elements released or sorbed. In general, feeds with high NDF content (straws and guinea grass) sorbed Ca from tap water, or released less in the rumen, and within these feeds the extent of sorption varied with source of fibre. Acid or NDS treatment removed little of the sorbed Ca, but they removed much of the Mg from both water and rumen residues. Fibres of wheat straw and jak leaves showed an affinity for Mg in the rumen. All feeds and their water and rumen residues sorbed P and Na from NDS, and the extent of sorption varied with the initial concentrations of these elements and with the type of fibre. Acid treatment removed part of the sorbed Na, but not the P. The solubility of K was not affected by the content of NDF, the type of fibre or the initial concentration of K. All feeds and their residues, except for the rumen residues of rice bran sorbed Cu from tap water and in the rumen. The recovery of Cu in rumen residues declined from 353% to 147% after NDS treatment, and with some feeds (glyricidia and jak leaves) the recovery was below 100%. Acid treatment removed part of the Zn sorbed by the water and rumen residues, but the capacity of residues to retain Zn varied with the type of feed.