• Title/Summary/Keyword: Mimic metabolism

Search Result 15, Processing Time 0.024 seconds

Effect of Methanol on Cultured Neuronal and Glial Cells on Rat Hippocampus (Methanol이 배양된 흰쥐 해마의 신경세포 및 신경교 세포의 성장에 미치는 영향)

  • 이정임;조병채;배영숙;이경은
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.203-211
    • /
    • 1996
  • Methanol has been widely used as an industrial solvent and environmental exposure to methanol would be expected to be increasing. In humans, methanol causes metabolic acidosis and damage to ocular system, and can lead to death in severe and untreated case. Clinical symptoms are attributed to accumulation of forrnic acid which is a metabolic product of methanol. In humans and primates, formic acid is accumulated after methanol intake but not in rodents due to the rapid metabolism of methanol. Neverthless, the developmental and reproductive toxicity were reported in rodents. Previous reports showed that perinatal exposure to ethanol produces a variety of damage in human central nervous system by direct neurotoxicity. This suggests that the mechanism of toxic symptoms by methanol in rodents might mimic that of ethanol in human. In the present study I hypothesized that methanol can also induce toxicity in neuronal cells. For the study, primary culture of rat hippocampal neurons and glias were empolyed. Hippocampal cells were prepared from the embryonic day-17 fetuses and maintained up to 7 days. Effect of methanol (10, 100, 500 and 1000 mM) on neurite outgrowth and cell viability was investigated at 0, 18 and 24 hours following methanol treatment. To study the changes in proliferation of glial cells, protein content was measured at 7 days. Neuronal cell viability in culture was not altered during 0-24 hours after methanol treatment. 10 and 100 mM methanol treatment significantly enhanced neurite outgrowth between 18-24 hours. 7-day exposure to 10 or 100 mM methanol significantly increased protein contents but that to 1000 mM methanol decreased in culture. In conclusion, methanol may have a variety of effects on growing and differentiation of neurons and glial cells in hippocampus. Treatment with low concentration of methanol caused that neurite outgrowth was enhanced during 18-24 hours and the numbers of glial cell were increased for 7 days. High concentration of methanol brought about decreased protein contents. At present, the mechanism responsible for the methanol- induced enhancement of neurite outgrowth is not clear. Further studies are required to delineate the mechanism possibly by employing molecular biological techniques.

  • PDF

BK Knockout by TALEN-Mediated Gene Targeting in Osteoblasts: KCNMA1 Determines the Proliferation and Differentiation of Osteoblasts

  • Hei, Hongya;Gao, Jianjun;Dong, Jibin;Tao, Jie;Tian, Lulu;Pan, Wanma;Wang, Hongyu;Zhang, Xuemei
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.530-535
    • /
    • 2016
  • Large conductance calcium-activated potassium (BK) channels participate in many important physiological functions in excitable tissues such as neurons, cardiac and smooth muscles, whereas the knowledge of BK channels in bone tissues and osteoblasts remains elusive. To investigate the role of BK channels in osteoblasts, we used transcription activator-like effector nuclease (TALEN) to establish a BK knockout cell line on rat ROS17/2.8 osteoblast, and detected the proliferation and mineralization of the BK-knockout cells. Our study found that the BKknockout cells significantly decreased the ability of proliferation and mineralization as osteoblasts, compared to the wild type cells. The overall expression of osteoblast differentiation marker genes in the BK-knockout cells was significantly lower than that in wild type osteoblast cells. The BK-knockout osteoblast cell line in our study displays a phenotype decrease in osteoblast function which can mimic the pathological state of osteoblast and thus provide a working cell line as a tool for study of osteoblast function and bone related diseases.

Lactate promotes vascular smooth muscle cell switch to a synthetic phenotype by inhibiting miR-23b expression

  • Hu, Yanchao;Zhang, Chunyan;Fan, Yajie;Zhang, Yan;Wang, Yiwen;Wang, Congxia
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.6
    • /
    • pp.519-530
    • /
    • 2022
  • Recent research indicates that lactate promotes the switching of vascular smooth muscle cells (VSMCs) to a synthetic phenotype, which has been implicated in various vascular diseases. This study aimed to investigate the effects of lactate on the VSMC phenotype switch and the underlying mechanism. The CCK-8 method was used to assess cell viability. The microRNAs and mRNAs levels were evaluated using quantitative PCR. Targets of microRNA were predicted using online tools and confirmed using a luciferase reporter assay. We found that lactate promoted the switch of VSMCs to a synthetic phenotype, as evidenced by an increase in VSMC proliferation, mitochondrial activity, migration, and synthesis but a decrease in VSMC apoptosis. Lactate inhibited miR-23b expression in VSMCs, and miR-23b inhibited VSMC's switch to the synthetic phenotype. Lactate modulated the VSMC phenotype through downregulation of miR-23b expression, suggesting that overexpression of miR-23b using a miR-23b mimic attenuated the effects of lactate on VSMC phenotype modulation. Moreover, we discovered that SMAD family member 3 (SMAD3) was the target of miR-23b in regulating VSMC phenotype. Further findings suggested that lactate promotes VSMC switch to synthetic phenotype by targeting SMAD3 and downregulating miR-23b. These findings suggest that correcting the dysregulation of miR-23b/SMAD3 or lactate metabolism is a potential treatment for vascular diseases.

A Novel in Vitro Method for the Metabolism Studies of Radiotracers Using Mouse Liver S9 Fraction (생쥐 간 S9 분획을 이용한 방사성추적자 대사물질의 새로운 체외 측정방법)

  • Ryu, Eun-Kyoung;Choe, Yearn-Seong;Kim, Dong-Hyun;Lee, Sang-Yoon;Choi, Yong;Lee, Kyung-Han;Kim, Byung-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.4
    • /
    • pp.325-329
    • /
    • 2004
  • Purpose: Usefulness of mouse liver S9 fraction was evaluated for the measurement of the metabolites in the in vitro metabolism study of $^{18}F$-labeled radiotracers. Materials and Methods: Mouse liver S9 fraction was isolated at au early step in the course of microsome preparation. The in vitro metabolism studies were tarried out by incubating a mixture containing the radiotracer, S9 fraction and NADPH at $37^{\ciirc}C$, and an aliquot of the mixture was analyzed at the indicated time points by radio-TLC. Metabolic defluorination was further confirmed by the incubation with calcium phosphate, a bone mimic. Results: The radiotracer $[^{18}F]1$ underwent metabolic defluorination within 15 min, which was consistent with the results of the in vivo method and the in vitro method using microsome. Radiotracer $[^{18}F]2$ was metabolized to three metabolites including $4-[^{18}F]fluorobenzoic$ acid within 60 min. It is likely that the one of these metabolites at the origin of radio-TLC was identical with the one that obtained from the in vivo and in vitro (microsome) method. Compared with the in vitro method using microsome, the method using S9 fraction gave a similar pattern of the metabolites but with a different ratio, which can be explained by the presence of cytosol in the S9 fraction. Conclusion: These results suggest that the findings of the in vitro metabolism studies using S9 fraction can reflect the in vivo metabolism of novel radiotracers in the liver. Moreover, this method can be used as a tool to determine metabolic defluorination along with calcium phosphate absorption method.

Ginsenoside compound K protects against cerebral ischemia/ reperfusion injury via Mul1/Mfn2-mediated mitochondrial dynamics and bioenergy

  • Qingxia Huang;Jing Li;Jinjin Chen;Zepeng Zhang;Peng Xu;Hongyu Qi;Zhaoqiang Chen;Jiaqi Liu;Jing Lu;Mengqi Shi;Yibin Zhang;Ying Ma;Daqing Zhao;Xiangyan Li
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.408-419
    • /
    • 2023
  • Background: Ginsenoside compound K (CK), the main active metabolite in Panax ginseng, has shown good safety and bioavailability in clinical trials and exerts neuroprotective effects in cerebral ischemic stroke. However, its potential role in the prevention of cerebral ischemia/reperfusion (I/R) injury remains unclear. Our study aimed to investigate the molecular mechanism of ginsenoside CK against cerebral I/R injury. Methods: We used a combination of in vitro and in vivo models, including oxygen and glucose deprivation/reperfusion induced PC12 cell model and middle cerebral artery occlusion/reperfusion induced rat model, to mimic I/R injury. Intracellular oxygen consumption and extracellular acidification rate were analyzed by Seahorse multifunctional energy metabolism system; ATP production was detected by luciferase method. The number and size of mitochondria were analyzed by transmission electron microscopy and MitoTracker probe combined with confocal laser microscopy. The potential mechanisms of ginsenoside CK on mitochondrial dynamics and bioenergy were evaluated by RNA interference, pharmacological antagonism combined with co-immunoprecipitation analysis and phenotypic analysis. Results: Ginsenoside CK pretreatment could attenuate mitochondrial translocation of DRP1, mitophagy, mitochondrial apoptosis, and neuronal bioenergy imbalance against cerebral I/R injury in both in vitro and in vivo models. Our data also confirmed that ginsenoside CK administration could reduce the binding affinity of Mul1 and Mfn2 to inhibit the ubiquitination and degradation of Mfn2, thereby elevating the protein level of Mfn2 in cerebral I/R injury. Conclusion: These data provide evidence that ginsenoside CK may be a promising therapeutic agent against cerebral I/R injury via Mul1/Mfn2 mediated mitochondrial dynamics and bioenergy.