DOI QR코드

DOI QR Code

BK Knockout by TALEN-Mediated Gene Targeting in Osteoblasts: KCNMA1 Determines the Proliferation and Differentiation of Osteoblasts

  • Hei, Hongya (Department of Pharmacology, School of Pharmacy, Fudan University) ;
  • Gao, Jianjun (Department of Bone Metabolism, Institute of Radiation Medicine, Fudan University) ;
  • Dong, Jibin (Department of Pharmacology, School of Pharmacy, Fudan University) ;
  • Tao, Jie (Department of Nephrology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine) ;
  • Tian, Lulu (Department of Pharmacology, School of Pharmacy, Fudan University) ;
  • Pan, Wanma (Department of Pharmacology, School of Pharmacy, Fudan University) ;
  • Wang, Hongyu (Department of Pharmacy, Shenyang Pharmaceutical University) ;
  • Zhang, Xuemei (Department of Pharmacology, School of Pharmacy, Fudan University)
  • Received : 2016.02.05
  • Accepted : 2016.05.23
  • Published : 2016.07.31

Abstract

Large conductance calcium-activated potassium (BK) channels participate in many important physiological functions in excitable tissues such as neurons, cardiac and smooth muscles, whereas the knowledge of BK channels in bone tissues and osteoblasts remains elusive. To investigate the role of BK channels in osteoblasts, we used transcription activator-like effector nuclease (TALEN) to establish a BK knockout cell line on rat ROS17/2.8 osteoblast, and detected the proliferation and mineralization of the BK-knockout cells. Our study found that the BKknockout cells significantly decreased the ability of proliferation and mineralization as osteoblasts, compared to the wild type cells. The overall expression of osteoblast differentiation marker genes in the BK-knockout cells was significantly lower than that in wild type osteoblast cells. The BK-knockout osteoblast cell line in our study displays a phenotype decrease in osteoblast function which can mimic the pathological state of osteoblast and thus provide a working cell line as a tool for study of osteoblast function and bone related diseases.

Keywords

References

  1. Bentzen, B.H., Olesen, S.P., Ronn, L.C., and Grunnet, M. (2014). BK channel activators and their therapeutic perspectives. Front. Physiol. 5, 389.
  2. Black, J.A., and Waxman, S.G. (2013). Noncanonical roles of voltage-gated sodium channels. Neuron 80, 280-291. https://doi.org/10.1016/j.neuron.2013.09.012
  3. Bruderer, M., Richards, R.G., Alini, M., and Stoddart, M.J. (2014). Role and regulation of RUNX2 in osteogenesis. Eur. Cells Mater. 28, 269-286. https://doi.org/10.22203/eCM.v028a19
  4. Chen, J., Zhang, W., Lin, J., Wang, F., Wu, M., Chen, C., Zheng, Y., Peng, X., Li, J., and Yuan, Z. (2014). An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol. Ther. 22, 303-311. https://doi.org/10.1038/mt.2013.212
  5. Chen, Q., Tao, J., Hei, H., Li, F., Wang, Y., Peng, W., and Zhang, X. (2015). Up-regulatory effects of curcumin on large conductance $Ca^{2+}$-activated $K^+$ channels. PLoS One 10, e0144800. https://doi.org/10.1371/journal.pone.0144800
  6. Contreras, G.F., Castillo, K., Enrique, N., Carrasquel-Ursulaez, W., Castillo, J.P., Milesi, V., Neely, A., Alvarez, O., Ferreira, G., Gonzalez, C., et al. (2013). A BK (Slo1) channel journey from molecule to physiology. Channels 7, 442-458. https://doi.org/10.4161/chan.26242
  7. Fernandez-Marino, A.I., Cidad, P., Zafra, D., Nocito, L., Dominguez, J., Olivan-Viguera, A., Kohler, R., Lopez-Lopez, J.R., Perez-Garcia, M.T., Valverde, M.A., et al. (2015). Tungstate-targeting of BKalphabeta1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle. PLoS One 10, e0118148. https://doi.org/10.1371/journal.pone.0118148
  8. Henney, N.C., Li, B., Elford, C., Reviriego, P., Campbell, A.K., Wann, K.T., and Evans, B.A. (2009) A large-conductance (BK) potassium channel subtype affects both growth and mineralization of human osteoblasts. Am. J. Physiol. Cell Physiol. 297, C1397-1408. https://doi.org/10.1152/ajpcell.00311.2009
  9. Hirukawa, K., Muraki, K., Ohya, S., Imaizumi, Y., and Togari, A. (2008). Electrophysiological properties of a novel Ca(2+)-activated K(+) channel expressed in human osteoblasts. Calcif. Tissue Int. 83, 222-229. https://doi.org/10.1007/s00223-008-9167-9
  10. Huang, H., Rao, Y., Sun, P., and Gong, L.W. (2002). Involvement of actin cytoskeleton in modulation of Ca21-activated $K^+$ channels from rat hippocampal CA1 pyramidal neurons. Neurosci. Lett. 332, 141-145. https://doi.org/10.1016/S0304-3940(02)00836-4
  11. Issa, N.P., and Hudspeth, A.J. (1994) Clustering of $Ca^{2+}$ channels and $Ca^{2+}$-activated $K^+$ channels at fluorescently labeled presynaptic active zones of hair cells. Proc. Natl. Acad. Sci. USA 91, 7578-7582. https://doi.org/10.1073/pnas.91.16.7578
  12. Jin, W., Sugaya, A., Tsuda, T., Ohguchi, H., and Sugaya, E. (2000). Relationship between large conductance calcium-activated potassium channel and bursting activity. Brain Res. 860, 21-28. https://doi.org/10.1016/S0006-8993(00)01943-0
  13. Kim, E.Y., Suh, J.M., Chiu, Y.H., and Dryer, SE. (2010). Regulation of podocyte BKCa channels by synaptopodin, Rho, and actin microfilament. Am. J. Physiol. 299, F594-F604.
  14. Long, F. (2012). Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 13, 27-38. https://doi.org/10.1038/nrm3254
  15. Lu, P., Chen, J., He, L., Ren, J., Chen, H., Rao, L., Zhuang, Q., Li, H., Li, L., Bao, L., et al. (2013). Generating hypoimmunogenic human embryonic stem cells by the disruption of beta 2-microglobulin. Stem Cell Rev. 9, 806-813. https://doi.org/10.1007/s12015-013-9457-0
  16. Mehranfard, N., Gholamipour-Badie, H., Motamedi, F., Janahmadi, M., and Naderi, N. (2015). Long-term increases in BK potassium channel underlie increased action potential firing in dentate granule neurons following pilocarpine-induced status epilepticus in rats. Neurosci. Lett. 585, 88-91. https://doi.org/10.1016/j.neulet.2014.11.041
  17. Morera, F.J., Saravia, J., Pontigo, J.P., Vargas-Chacoff, L., Contreras, G.F., Pupo, A., Lorenzo, Y., Castillo, K., Tilegenova, C., Cuello, L.G., et al. (2015). Voltage-dependent BK and Hv1 channels expressed in non-excitable tissues: New therapeutics opportunities as targets in human diseases. Pharmacol Res. 101, 56-64. https://doi.org/10.1016/j.phrs.2015.08.011
  18. Petkov, G.V. (2014). Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am. J. Physiol. R 307, R571-584.
  19. Sandow, S.L., and Grayson, T.H. (2009). Limits of isolation and culture: intact vascular endothelium and BKCa. Am. J. Physiol. Heart Circ. Physiol. 297, H1-H7. https://doi.org/10.1152/ajpheart.00042.2009
  20. Sausbier, U., Dullin, C., Missbach-Guentner, J., Kabagema, C., Flockerzie, K., Kuscher, G.M., Stuehmer, W., Neuhuber, W., Ruth, P., Alves, F., et al. (2011). Osteopenia due to enhanced cathepsin K release by BK channel ablation in osteoclasts. PLoS One 6, e21168. https://doi.org/10.1371/journal.pone.0021168
  21. Shen, R., Wang, X., Drissi, H., Liu, F., O'Keefe, R.J., and Chen, D. (2006). Cyclin D1-cdk4 induce runx2 ubiquitination and degradation. J. Biol. Chem. 281, 16347-16353. https://doi.org/10.1074/jbc.M603439200
  22. Tokuda, S., and Furuse, M. (2015). Claudin-2 knockout by TALENmediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells. PLoS One 10, e0119869. https://doi.org/10.1371/journal.pone.0119869
  23. Wu, R.S., and Marx, S.O. (2010). The BK potassium channel in the vascular smooth muscle and kidney: alpha-and beta-subunits. Kidney Int. 78, 963-974. https://doi.org/10.1038/ki.2010.325
  24. Wu, Z., Yin, H., Liu, T., Yan, W., Li, Z., Chen, J., Chen, H., Wang, T., Jiang, Z., Zhou, W., et al. (2014) MiR-126-5p regulates osteoclast differentiation and bone resorption in giant cell tumor through inhibition of MMP-13. Biochem. Biophys. Res. Commun. 443, 944-949. https://doi.org/10.1016/j.bbrc.2013.12.075
  25. Yamamura, H., Ikeda, C., Suzuki, Y., Ohya, S., and Imaizumi, Y. (2012). Molecular assembly and dynamics of fluorescent proteintagged single KCa1.1 channel in expression system and vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 302, C1257-C1268. https://doi.org/10.1152/ajpcell.00191.2011
  26. Yen, T.Y., Li, K.P., Ou, S.C., Shien, J.H., Lu, H.M., and Chang, P.C. (2015). Construction of an infectious plasmid clone of Muscovy duck parvovirus by TA cloning and creation of a partially attenuated strain. Avian Pathol. 44, 124-128. https://doi.org/10.1080/03079457.2015.1008399
  27. Yu, S., Yerges-Armstrong, L.M., Chu, Y., Zmuda, J.M., and Zhang, Y. (2013). E2F1 effects on osteoblast differentiation and mineralization are mediated through up-regulation of frizzled-1. Bone 56, 234-241. https://doi.org/10.1016/j.bone.2013.06.019
  28. Zhang, Y.Y., Yue, J., Che, H., Sun, H.Y., Tse, H.F., and Li, G.R. (2014). BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 229, 202-212. https://doi.org/10.1002/jcp.24435

Cited by

  1. Mesenchymal stem cell differentiation: Control by calcium-activated potassium channels 2018, https://doi.org/10.1002/jcp.26120
  2. KCNMA1-linked channelopathy vol.151, pp.10, 2016, https://doi.org/10.1085/jgp.201912457
  3. De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes vol.28, pp.17, 2016, https://doi.org/10.1093/hmg/ddz117
  4. BK ablation attenuates osteoblast bone formation via integrin pathway vol.10, pp.10, 2016, https://doi.org/10.1038/s41419-019-1972-8
  5. Gene-gene and gene-lifestyle interactions of AKAP11, KCNMA1, PUM1, SPTBN1, and EPDR1 on osteoporosis risk in middle-aged adults vol.79, pp.None, 2016, https://doi.org/10.1016/j.nut.2020.110859
  6. BK Channel Deficiency in Osteoblasts Reduces Bone Formation via the Wnt/β-Catenin Pathway vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0004
  7. Role of K+ and Ca2+-Permeable Channels in Osteoblast Functions vol.22, pp.19, 2016, https://doi.org/10.3390/ijms221910459
  8. Biophysical phenotyping of mesenchymal stem cells along the osteogenic differentiation pathway vol.37, pp.6, 2016, https://doi.org/10.1007/s10565-020-09569-7