References
- Bentzen, B.H., Olesen, S.P., Ronn, L.C., and Grunnet, M. (2014). BK channel activators and their therapeutic perspectives. Front. Physiol. 5, 389.
- Black, J.A., and Waxman, S.G. (2013). Noncanonical roles of voltage-gated sodium channels. Neuron 80, 280-291. https://doi.org/10.1016/j.neuron.2013.09.012
- Bruderer, M., Richards, R.G., Alini, M., and Stoddart, M.J. (2014). Role and regulation of RUNX2 in osteogenesis. Eur. Cells Mater. 28, 269-286. https://doi.org/10.22203/eCM.v028a19
- Chen, J., Zhang, W., Lin, J., Wang, F., Wu, M., Chen, C., Zheng, Y., Peng, X., Li, J., and Yuan, Z. (2014). An efficient antiviral strategy for targeting hepatitis B virus genome using transcription activator-like effector nucleases. Mol. Ther. 22, 303-311. https://doi.org/10.1038/mt.2013.212
-
Chen, Q., Tao, J., Hei, H., Li, F., Wang, Y., Peng, W., and Zhang, X. (2015). Up-regulatory effects of curcumin on large conductance
$Ca^{2+}$ -activated$K^+$ channels. PLoS One 10, e0144800. https://doi.org/10.1371/journal.pone.0144800 - Contreras, G.F., Castillo, K., Enrique, N., Carrasquel-Ursulaez, W., Castillo, J.P., Milesi, V., Neely, A., Alvarez, O., Ferreira, G., Gonzalez, C., et al. (2013). A BK (Slo1) channel journey from molecule to physiology. Channels 7, 442-458. https://doi.org/10.4161/chan.26242
- Fernandez-Marino, A.I., Cidad, P., Zafra, D., Nocito, L., Dominguez, J., Olivan-Viguera, A., Kohler, R., Lopez-Lopez, J.R., Perez-Garcia, M.T., Valverde, M.A., et al. (2015). Tungstate-targeting of BKalphabeta1 channels tunes ERK phosphorylation and cell proliferation in human vascular smooth muscle. PLoS One 10, e0118148. https://doi.org/10.1371/journal.pone.0118148
- Henney, N.C., Li, B., Elford, C., Reviriego, P., Campbell, A.K., Wann, K.T., and Evans, B.A. (2009) A large-conductance (BK) potassium channel subtype affects both growth and mineralization of human osteoblasts. Am. J. Physiol. Cell Physiol. 297, C1397-1408. https://doi.org/10.1152/ajpcell.00311.2009
- Hirukawa, K., Muraki, K., Ohya, S., Imaizumi, Y., and Togari, A. (2008). Electrophysiological properties of a novel Ca(2+)-activated K(+) channel expressed in human osteoblasts. Calcif. Tissue Int. 83, 222-229. https://doi.org/10.1007/s00223-008-9167-9
-
Huang, H., Rao, Y., Sun, P., and Gong, L.W. (2002). Involvement of actin cytoskeleton in modulation of Ca21-activated
$K^+$ channels from rat hippocampal CA1 pyramidal neurons. Neurosci. Lett. 332, 141-145. https://doi.org/10.1016/S0304-3940(02)00836-4 -
Issa, N.P., and Hudspeth, A.J. (1994) Clustering of
$Ca^{2+}$ channels and$Ca^{2+}$ -activated$K^+$ channels at fluorescently labeled presynaptic active zones of hair cells. Proc. Natl. Acad. Sci. USA 91, 7578-7582. https://doi.org/10.1073/pnas.91.16.7578 - Jin, W., Sugaya, A., Tsuda, T., Ohguchi, H., and Sugaya, E. (2000). Relationship between large conductance calcium-activated potassium channel and bursting activity. Brain Res. 860, 21-28. https://doi.org/10.1016/S0006-8993(00)01943-0
- Kim, E.Y., Suh, J.M., Chiu, Y.H., and Dryer, SE. (2010). Regulation of podocyte BKCa channels by synaptopodin, Rho, and actin microfilament. Am. J. Physiol. 299, F594-F604.
- Long, F. (2012). Building strong bones: molecular regulation of the osteoblast lineage. Nat. Rev. Mol. Cell Biol. 13, 27-38. https://doi.org/10.1038/nrm3254
- Lu, P., Chen, J., He, L., Ren, J., Chen, H., Rao, L., Zhuang, Q., Li, H., Li, L., Bao, L., et al. (2013). Generating hypoimmunogenic human embryonic stem cells by the disruption of beta 2-microglobulin. Stem Cell Rev. 9, 806-813. https://doi.org/10.1007/s12015-013-9457-0
- Mehranfard, N., Gholamipour-Badie, H., Motamedi, F., Janahmadi, M., and Naderi, N. (2015). Long-term increases in BK potassium channel underlie increased action potential firing in dentate granule neurons following pilocarpine-induced status epilepticus in rats. Neurosci. Lett. 585, 88-91. https://doi.org/10.1016/j.neulet.2014.11.041
- Morera, F.J., Saravia, J., Pontigo, J.P., Vargas-Chacoff, L., Contreras, G.F., Pupo, A., Lorenzo, Y., Castillo, K., Tilegenova, C., Cuello, L.G., et al. (2015). Voltage-dependent BK and Hv1 channels expressed in non-excitable tissues: New therapeutics opportunities as targets in human diseases. Pharmacol Res. 101, 56-64. https://doi.org/10.1016/j.phrs.2015.08.011
- Petkov, G.V. (2014). Central role of the BK channel in urinary bladder smooth muscle physiology and pathophysiology. Am. J. Physiol. R 307, R571-584.
- Sandow, S.L., and Grayson, T.H. (2009). Limits of isolation and culture: intact vascular endothelium and BKCa. Am. J. Physiol. Heart Circ. Physiol. 297, H1-H7. https://doi.org/10.1152/ajpheart.00042.2009
- Sausbier, U., Dullin, C., Missbach-Guentner, J., Kabagema, C., Flockerzie, K., Kuscher, G.M., Stuehmer, W., Neuhuber, W., Ruth, P., Alves, F., et al. (2011). Osteopenia due to enhanced cathepsin K release by BK channel ablation in osteoclasts. PLoS One 6, e21168. https://doi.org/10.1371/journal.pone.0021168
- Shen, R., Wang, X., Drissi, H., Liu, F., O'Keefe, R.J., and Chen, D. (2006). Cyclin D1-cdk4 induce runx2 ubiquitination and degradation. J. Biol. Chem. 281, 16347-16353. https://doi.org/10.1074/jbc.M603439200
- Tokuda, S., and Furuse, M. (2015). Claudin-2 knockout by TALENmediated gene targeting in MDCK cells: claudin-2 independently determines the leaky property of tight junctions in MDCK cells. PLoS One 10, e0119869. https://doi.org/10.1371/journal.pone.0119869
- Wu, R.S., and Marx, S.O. (2010). The BK potassium channel in the vascular smooth muscle and kidney: alpha-and beta-subunits. Kidney Int. 78, 963-974. https://doi.org/10.1038/ki.2010.325
- Wu, Z., Yin, H., Liu, T., Yan, W., Li, Z., Chen, J., Chen, H., Wang, T., Jiang, Z., Zhou, W., et al. (2014) MiR-126-5p regulates osteoclast differentiation and bone resorption in giant cell tumor through inhibition of MMP-13. Biochem. Biophys. Res. Commun. 443, 944-949. https://doi.org/10.1016/j.bbrc.2013.12.075
- Yamamura, H., Ikeda, C., Suzuki, Y., Ohya, S., and Imaizumi, Y. (2012). Molecular assembly and dynamics of fluorescent proteintagged single KCa1.1 channel in expression system and vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 302, C1257-C1268. https://doi.org/10.1152/ajpcell.00191.2011
- Yen, T.Y., Li, K.P., Ou, S.C., Shien, J.H., Lu, H.M., and Chang, P.C. (2015). Construction of an infectious plasmid clone of Muscovy duck parvovirus by TA cloning and creation of a partially attenuated strain. Avian Pathol. 44, 124-128. https://doi.org/10.1080/03079457.2015.1008399
- Yu, S., Yerges-Armstrong, L.M., Chu, Y., Zmuda, J.M., and Zhang, Y. (2013). E2F1 effects on osteoblast differentiation and mineralization are mediated through up-regulation of frizzled-1. Bone 56, 234-241. https://doi.org/10.1016/j.bone.2013.06.019
- Zhang, Y.Y., Yue, J., Che, H., Sun, H.Y., Tse, H.F., and Li, G.R. (2014). BKCa and hEag1 channels regulate cell proliferation and differentiation in human bone marrow-derived mesenchymal stem cells. J. Cell. Physiol. 229, 202-212. https://doi.org/10.1002/jcp.24435
Cited by
- Mesenchymal stem cell differentiation: Control by calcium-activated potassium channels 2018, https://doi.org/10.1002/jcp.26120
- KCNMA1-linked channelopathy vol.151, pp.10, 2016, https://doi.org/10.1085/jgp.201912457
- De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurological phenotypes vol.28, pp.17, 2016, https://doi.org/10.1093/hmg/ddz117
- BK ablation attenuates osteoblast bone formation via integrin pathway vol.10, pp.10, 2016, https://doi.org/10.1038/s41419-019-1972-8
- Gene-gene and gene-lifestyle interactions of AKAP11, KCNMA1, PUM1, SPTBN1, and EPDR1 on osteoporosis risk in middle-aged adults vol.79, pp.None, 2016, https://doi.org/10.1016/j.nut.2020.110859
- BK Channel Deficiency in Osteoblasts Reduces Bone Formation via the Wnt/β-Catenin Pathway vol.44, pp.8, 2021, https://doi.org/10.14348/molcells.2021.0004
- Role of K+ and Ca2+-Permeable Channels in Osteoblast Functions vol.22, pp.19, 2016, https://doi.org/10.3390/ijms221910459
- Biophysical phenotyping of mesenchymal stem cells along the osteogenic differentiation pathway vol.37, pp.6, 2016, https://doi.org/10.1007/s10565-020-09569-7