• 제목/요약/키워드: Milling operation

검색결과 143건 처리시간 0.026초

공구경로 곡면을 이용한 이송속도 최적화 (Feedrate Optimization Using CL Surface)

  • 김수진;정태성;양민양
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.39-47
    • /
    • 2004
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR(material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over loom, so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL (cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants were applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to the machining of speaker and cellular phone mold. The finishing time was reduced to 12.6%, tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were reduced, compared to the machining by constant feedrate. The machining time was shorter to 17% and surface quality and tool was also better than the conventional federate regulation using curvature of the tool path.

Trends and Constraints of Grain Slurry Food Processing in Kaduna State, Nigeria

  • Dolapo, Oloyede O.;Shittu, Sarafadeen K.;Kayode, Fadele O.
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.93-97
    • /
    • 2016
  • Purpose: Grain slurry diet are described as food obtained from ground grain paste. They serve as highly nutritious food for both adults and infants in Nigeria because of their immense nutritive and economical value. However, the production of these grain slurry diets is confronted with challenges that have hampered their commercialization. This study examines the trends and constraints of grain slurry food processing in Kaduna State. Methods: A survey was conducted using a structured questionnaire to elicit information from 192 selected processors, including both men and women. The survey was structured in line with the study objectives. The information was collated and synopsized into frequency distribution. Results: These findings revealed that 80% of the respondents processed between 1.0 tons and 13.0 tons of grain slurry per month. More than 90% of the processors processed grain slurry into koko, kunu, agidi, and pito. Accordingly, 80% of the interviewed processors indicated that sieving is one of the major constraints. Furthermore, inadequate modern machinery required to perform this operation makes it highly discouraging. One of the major challenges faced by the grain slurry producers in Nigeria is the lack of processing machinery for most operations (39.1%), followed by the tedious processing nature (27.1%), high labor cost (18.1%), and lack of market (9.4%). The traditional method of grain slurry processing was more popular than using modern equipment, except milling (96.5%), which is the only mechanized unit operation in grain slurry processing. Conclusion: Grain slurry processing and marketing were found to be profitable. However, these limitations could extremely reduce the level of grain slurry production, processing, and economic returns, thereby affecting the general wellbeing of the processors. The study also raised concerns about the safety and hygiene associated with traditionally processed grain slurry diets in the investigated areas.

초경소재 선정을 위한 고속가공의 엔드밀 성능 평가 (Performance Evaluation on the Endmill of High Speed Machining for Selection of Tungsten Carbide (WC-Co) Material)

  • 권동희;김정석;김민욱;정영근;강명창
    • 한국분말재료학회지
    • /
    • 제15권5호
    • /
    • pp.359-364
    • /
    • 2008
  • To satisfy the demand of higher cutting performance, mechanical properties with tungsten carbide (WC-Co) tool materials were investigated. Hardness and transverse rupture strength with WC grain size, Co content and density were measured. Compared to H, K, and S manufacture maker as tungsten carbide (WC-Co) tool materials were used for high-speed machining of end-milling operation. The three tungsten carbide (WC-Co) tool materials were evaluated by cutting of STD 11 cold-worked die steel (HRC25) under high-speed cutting condition. Also, tool life was obtained from measuring flank wear by CCD wear measuring system. Tool dynamometer was used to measure cutting force. The cutting force and tool wear are discussed along with tool material characteristics. Consequently, the end-mill of K, H manufacture maker showed higher wear-resistance due to its higher hardness, while the S maker endmill tool showed better performance for high metal removal.

다른 수분함량으로 압출성형한 다수확 멥쌀가루의 이화학적 특성 (Physicochemical Properties of High Yielding Non-waxy Rice Flours Extruded with Different Moisture Contents)

  • 정소희;강위수;신말식
    • 한국식품조리과학회지
    • /
    • 제27권6호
    • /
    • pp.745-754
    • /
    • 2011
  • To improve the textural properties of gluten free rice flour based products, the physicochemical and pasting properties of extruded non-waxy rice flours using extruder were investigated. The high yielding Tongil type rice variety, Hanarum was used. Hanarum rice flour was prepared by dry milling from soaked and dried rice grain. The operation conditions of twin screw extruder were 250 rpm of screw speed, $160^{\circ}C$ of barrel temperature, and 24, 27, and 30% of moisture content. Hanarum extruded rice flour (HERF) were lower in crude lipid and ash contents, but higher in crude protein than Hanarum rice flour (HRF). The color values of HERF showed significantly different (p<0.05) with different moisture contents. Water binding capacities, apparent amylose contents, and damaged starch of HERF were higher than those of HRF. Moisture contents affected water binding capacities of HERF. Solubility increased with increasing heating temperature and solubilities of HERF differed significantly (p<0.05). X-ray crystallinity was changed after extrusion cooking and that of HERF showed sharp peaks at $2{\theta}=18-20^{\circ}$. The pasting viscosities of HERF kept lower values (~ 10 RVU) constantly.

옥트리에 기반한 5 축 가공 시뮬레이션을 위한 연구 (Research for the 5 axis machining simulation system with Octree Algorithm)

  • 김용현;고성림
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.956-959
    • /
    • 2005
  • The overall goal of this thesis is to develop a new algorithm based on the octree model for geometric and mechanistic milling operation at the same time. Most commercial machining simulators are based on the Z map model, which has several limitations in terms of achieving a high level of precision in five-axis machining simulation. Octree representation being a three-dimensional (3D) decomposition method, an octree-based algorithm is expected to be able to overcome such limitations. With the octree model, storage requirement is reduced. Moreover, recursive subdivision is processed in the boundaries, which reduces useless computations. To achieve a high level of accuracy, fast computation time and less memory consumption, the advanced octree model is suggested. By adopting the supersampling technique of computer graphics, the accuracy can be significantly improved at approximately equal computation time. The proposed algorithm can verify the NC machining process and estimate the material removal volume at the same time.

  • PDF

코너부의 펜슬가공시 볼엔드밀의 공구변형 특성 (Characteristics of Tool Deflection of Ball-end Mill Cutter in Pencil Cutting of the Corner)

  • 왕덕현;윤경석
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.123-129
    • /
    • 1999
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable one for the machining of free-form surface. During the process, the pencil cutting operation can be adopted before finish cut to eliminate overload in uncut area caused by large diameter of ball-end mill. The ball-end mill cutter for the pencil cutting is easily deflected by cutting force due to the long and thin shape, and the tool deflection in pencil cutting is one of the main reason of the machining errors in a free-form surface. The purpose of this study is to find the characteristics of deflected cutter trajectory by constructing measurement system with eddy-current sensor. It was found that the severe reduction of corner radius produced the overcut during the plane cutting. Up cutting method induced the overcut both plane and slope cutting, but down cutting one induced the undercut. From the experiments, down cutting with upward cutting path can generate the small undercut surface.

  • PDF

전문가 시스템 접근법을 이용한 기계가공용 셋업계획 (Setup Planning for Machining processes Using Expert System Approach)

  • 정영득
    • 산업공학
    • /
    • 제6권1호
    • /
    • pp.31-45
    • /
    • 1993
  • Setup planning for machining processes is a part of fixture planning which is also a part of process planning. A setup of a part is defined as a group of features which are machined while the part is fixtured in one single fixture. Setup planning includes a number of tasks such as the selection of setup, sequence of setups and datum frame for each setup. Setup planning is an important function in fixture planning which must be able to support and to clamp a workpiece to prevent deflections caused by machining and clamping loads. This paper presents setup planning system using expert system approach(SPES) for prismatic parts which can be machined on vertical milling machine. SPES consists of preprocessing module and main processing module. Preprocessing module executes the conversion of feature data to frame type data and the determination of setups, and main processing module executes the determination of datum frame of each setup and sequance of setups. Preprocessing module is coded by C language and main processing module is a rule-based expert system using EXSYS pro. The performance of SPES is evaluated through case studies and the results show successful work except for operation sequence of machining holes. This is due to the limited rules for machining holes.

  • PDF

적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성 (Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera)

  • 이상진;박원규;이상태;이우영;하만경
    • 한국기계가공학회지
    • /
    • 제2권3호
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성 (Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera)

  • 김흥배;이우영;최성주;유중학
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Rigid Core 샌드위치 구조의 초고속 공작기계 베드 적용에 관한 연구 (Application of Sandwich Structure with Rigid Core for High Speed Machine Tool Bed)

  • 서정도;이대길;김태형;박보선;최원선
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.113-116
    • /
    • 2003
  • To maximize the productivity in machining molds and dies, machine tools should operate at high speeds. During the high speed operation of moving frames or spindles, vibration problems are apt to occur if the machine tool structures are made of conventional steel materials with inferior damping characteristics. However, self-excited vibration or chatter is bound to occur during high speed machining when cutting speed exceeds the stability limit of machine tool. Chatter is undesirable because of its adverse effect on surface finish, machining accuracy, and tool lift. Furthermore, chatter is a major cause of reducing production rate because, if no remedy can be found, metal removal rates have to be lowered until vibration-free performances is obtained. Also, the resonant vibration of machine tools frequently occurs when operating frequency approaches one of their natural frequencies because machine tools have several natural frequencies due to their many continuous structural elements. However, these vibration problems are closely related to damping characteristics of machine tool structures. This paper presents the use of polymer concrete and sandwich structures to overcome vibration problems. The polymer concrete has high potential for machine tool bed due to its good damping characteristics with moderate stiffness. In this study, a polymer concrete bed combined with welded steel structure i.e., a hybrid structure was designed and manufactured for a high-speed gantry-type milling. Also. its dynamic characteristics were measured by modal tests.

  • PDF