• Title/Summary/Keyword: Milk Traits

Search Result 160, Processing Time 0.033 seconds

Response to Selection for Milk Yield and Lactation Length in Buffaloes

  • Khan, M.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.567-570
    • /
    • 1997
  • A multiple trait animal model having milk yield and lactation length was used to estimate genetic parameters using data from four institutional herds and four field recording centers. Response to selection for milk yield alone and in combination with lactation length was estimated by using principles of genetic theory. Lactation records (n = 2,353) adjusted for age at calving to 60 months were utilized. Milk yield was 17% heritable with repeatability of 0.44. Lactation length had a low heritability of 0.06 with repeatability of 0.16. Genetic correlation between the two traits was 0.70. Selection response in milk yield can be improved slightly (103.8 vs 102.8 kg) when information on covariance with lactation length is used together with the information on milk yield.

Association of UDP-galactose-4-epimerase with milk protein concentration in the Chinese Holstein population

  • Li, Cong;Cai, Wentao;Liu, Shuli;Zhou, Chenghao;Cao, Mingyue;Yin, Hongwei;Sun, Dongxiao;Zhang, Shengli;Loor, Juan J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1725-1731
    • /
    • 2020
  • Objective: An initial RNA-Sequencing study revealed that UDP-galactose-4-epimerase (GALE) was one of the most promising candidates for milk protein concentration in Chinese Holstein cattle. This enzyme catalyzes the interconversion of UDP-galactose and UDP-glucose, an important step in galactose catabolism. To further validate the genetic effect of GALE on milk protein traits, genetic variations were identified, and genotypes-phenotypes associations were performed. Methods: The entire coding region and the 5'-regulatory region (5'-UTR) of GALE were re-sequenced using pooled DNA of 17 unrelated sires. Association studies for five milk production traits were performed using a mixed linear animal model with a population encompassing 1,027 Chinese Holstein cows. Results: A total of three variants in GALE were identified, including two novel variants (g.2114 A>G and g.2037 G>A) in the 5'-UTR and one previously reported variant (g.3836 G>C) in an intron. All three single nucleotide polymorphisms (SNPs) were associated with milk yield (p<0.0001), fat yield (p = 0.0006 to <0.0001), protein yield (p = 0.0232 to <0.0001) and protein percentage (p<0.0001), while no significant associations were detected between the SNPs and fat percentage. A strong linkage disequilibrium (D' = 0.96 to 1.00) was observed among all three SNPs, and a 5 Kb haplotype block involving three main haplotypes with GAG, AGC, and AGG was formed. The results of haplotype association analyses were consistent with the results of single locus association analysis (p<0.0001). The phenotypic variance ratio above 3.00% was observed for milk protein yield that was explained by SNP-g.3836G >C. Conclusion: Overall, our findings provided new insights into the polymorphic variations in bovine GALE gene and their associations with milk protein concentration. The data indicate their potential uses for marker-assisted breeding or genetic selection schemes.

Genetic parameters for milk yield in imported Jersey and Jersey-Friesian cows using daily milk records in Sri Lanka

  • Samaraweera, Amali Malshani;Boerner, Vinzent;Cyril, Hewa Waduge;Werf, Julius van der;Hermesch, Susanne
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1741-1754
    • /
    • 2020
  • Objective: This study was conducted to estimate genetic parameters for milk yield traits using daily milk yield records from parlour data generated in an intensively managed commercial dairy farm with Jersey and Jersey-Friesian cows in Sri Lanka. Methods: Genetic parameters were estimated for first and second lactation predicted and realized 305-day milk yield using univariate animal models. Genetic parameters were also estimated for total milk yield for each 30-day intervals of the first lactation using univariate animal models and for daily milk yield using random regression models fitting second-order Legendre polynomials and assuming heterogeneous residual variances. Breeding values for predicted 305-day milk yield were estimated using an animal model. Results: For the first lactation, the heritability of predicted 305-day milk yield in Jersey cows (0.08±0.03) was higher than that of Jersey-Friesian cows (0.02±0.01). The second lactation heritability estimates were similar to that of first lactation. The repeatability of the daily milk records was 0.28±0.01 and the heritability ranged from 0.002±0.05 to 0.19±0.02 depending on day of milk. Pearson product-moment correlations between the bull estimated breeding values (EBVs) in Australia and bull EBVs in Sri Lanka for 305-day milk yield were 0.39 in Jersey cows and -0.35 in Jersey-Friesian cows. Conclusion: The heritabilities estimated for milk yield in Jersey and Jersey-Friesian cows in Sri Lanka were low, and were associated with low additive genetic variances for the traits. Sire differences in Australia were not expressed in the tropical low-country of Sri Lanka. Therefore, genetic progress achieved by importing genetic material from Australia can be expected to be slow. This emphasizes the need for a within-country evaluation of bulls to produce locally adapted dairy cows.

The Prediction of the Expected Current Selection Coefficient of Single Nucleotide Polymorphism Associated with Holstein Milk Yield, Fat and Protein Contents

  • Lee, Young-Sup;Shin, Donghyun;Lee, Wonseok;Taye, Mengistie;Cho, Kwanghyun;Park, Kyoung-Do;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.36-42
    • /
    • 2016
  • Milk-related traits (milk yield, fat and protein) have been crucial to selection of Holstein. It is essential to find the current selection trends of Holstein. Despite this, uncovering the current trends of selection have been ignored in previous studies. We suggest a new formula to detect the current selection trends based on single nucleotide polymorphisms (SNP). This suggestion is based on the best linear unbiased prediction (BLUP) and the Fisher's fundamental theorem of natural selection both of which are trait-dependent. Fisher's theorem links the additive genetic variance to the selection coefficient. For Holstein milk production traits, we estimated the additive genetic variance using SNP effect from BLUP and selection coefficients based on genetic variance to search highly selective SNPs. Through these processes, we identified significantly selective SNPs. The number of genes containing highly selective SNPs with p-value <0.01 (nearly top 1% SNPs) in all traits and p-value <0.001 (nearly top 0.1%) in any traits was 14. They are phosphodiesterase 4B (PDE4B), serine/threonine kinase 40 (STK40), collagen, type XI, alpha 1 (COL11A1), ephrin-A1 (EFNA1), netrin 4 (NTN4), neuron specific gene family member 1 (NSG1), estrogen receptor 1 (ESR1), neurexin 3 (NRXN3), spectrin, beta, non-erythrocytic 1 (SPTBN1), ADP-ribosylation factor interacting protein 1 (ARFIP1), mutL homolog 1 (MLH1), transmembrane channel-like 7 (TMC7), carboxypeptidase X, member 2 (CPXM2) and ADAM metallopeptidase domain 12 (ADAM12). These genes may be important for future artificial selection trends. Also, we found that the SNP effect predicted from BLUP was the key factor to determine the expected current selection coefficient of SNP. Under Hardy-Weinberg equilibrium of SNP markers in current generation, the selection coefficient is equivalent to $2^*SNP$ effect.

Genetic Relationship of Productive Life, Production and Type Traits of Korean Holsteins at Early Lactations

  • Wasana, Nidarshani;Cho, GwangHyun;Park, SuBong;Kim, SiDong;Choi, JaeGwan;Park, ByungHo;Park, ChanHyuk;Do, ChangHee
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.9
    • /
    • pp.1259-1265
    • /
    • 2015
  • The present study was performed to study the genetic relationship of productive life with production and type traits of Korean Holsteins at first three lactations. The data for the analysis from 56,054, 28,997, and 11,816 animals of first, second and third parity cows which were born from 2006 to 2011 were collected by Dairy Cattle Improvement Center, National Agricultural Co-operative Federation. Milk, protein and fat yields adjusted for 305 days and average somatic cell score considered as production traits and analyzed type traits were stature, strength, body depth, dairy form, rump angle, rump width, rear leg side view, foot angle, front attachment placement, rear attachment height, rear attachment width, udder cleft, udder depth, front teat placement and front teat length. A multi trait genetic analysis was performed using Wombat program with restricted maximum likelihood animal model composed of fixed effect of birth year, farm and the random effect of animal and random residual effect according to the traits. Heritability estimates of productive life were between 0.06 and 0.13. Genetic and phenotypic correlations between production and productive life traits ranged from 0.35 to 0.04 for milk, 0.16 to 0.05 for protein and 0.18 to 0.02 f 15-0034 (2nd) 150520 or fat. Somatic cells score showed a negative genetic and phenotypic correlation with productive life and also udder type traits, indicating that the selection for higher udder traits will likely to improve resistance to mastitis and persistence in the herd. Among all dairy form type traits, udder characters such as udder cleft showed a significant relationship with productive life. However, a specific change of heritabilities or correlations were not observed with the change of parity. Moreover, further studies are needed to further confirm the significance of the above traits and the effect of parity on above relationships in order to minimize both voluntary and involuntary culling rates while improving herd health and maintaining high yielding dairy cows.

Welfare assessment traits, milk quantity and quality, and profitability of Anatolian buffalo cows confined in closed-tied or semi-open free-stall barns can be affected by supplementary feeding at milking

  • Ibrahim Cihangir Okuyucu;Ahmet Akdag;Huseyin Erdem;Canan Kop-Bozbay;Samet Hasan Abaci;Ali Vaiz Garipoglu;Esin Hazneci;Nuh Ocak
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1110-1120
    • /
    • 2024
  • Objective: This study was conducted to evaluate the effect of offering (OSF) or not (NSF) supplemental feed at milking on temperament (TS), udder hygiene (UHS) and body condition (BCS) scores, and milk yield per milking (MYM), milk quality traits, and profitability of primiparous Anatolian buffalo cows at 90 days of lactation confined in closed-tied (CB) or semi-open free-stall (OB) barns. Methods: In Experiment I, 108 cows were selected to encompass four treatments (OBOSF, OB-NSF, CB-OSF, and CB-NSF) of 27 cows, considering barn type (OB and CB) and supplementary feed (OSF and NSF) at milking. In Experiment II, 60 OB cows were selected to encompass one of five groups of 12 cows each: i) no supplemental feed (CON), ii) commercial concentrate (CC), iii) CC + corn silage (CCS), iv) CCS + alfalfa hay (CSA), or v) CC + ryegrass silage (CRS) at milking. Results: The TS and UHS of the OB and OSF cows were lower (better) than those of the CB and NSF cows, respectively. The OSF increased milk protein, lactose, and solids-not-fat but decreased milk freezing point and electrical conductivity compared with the NSF. The MYM and milk fat of the OB-OSF cows were higher than those of the OB-NSF and CBNSF cows. The TS and UHS of the cows negatively correlated with MYM and some milk chemicals (fat, protein, and solids-not-fat), but BCS correlated positively. The TS and milk electrical conductivity of the CCS, CSA, and CRS cows were lower than those of the CON and CC cows, but BCS, MYM, and milk fat were higher. Partial budget analysis identified a higher net profit for supplemental feed-offered groups (OB-OSF, CCS, CSA, and CRS). Conclusion: Offering roughage with concentrates at milking for indoor primiparous buffalo cows is more conducive to well-being, milk yield, milk quality, and economy.

Long-Term Breeding Strategies for Genetic Improvement of Buffaloes in Developing Countries - Review -

  • Chantalakhana, C.;Skunmun, P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1152-1161
    • /
    • 1999
  • Buffalo raising to produce milk, meat, and draught power as well as other products continues to be important in Asia and other parts of the world in the next century due to an increase in the demand for such products and the unique roles of buffaloes in rural economy. Long-term breeding strategies with special relevance to present and future farming systems prevailing in developing countries are proposed. Some important considerations in the choice of certain breeding strategies for long-term genetic improvement in buffaloes are discussed. Some recent research results in genetic selection and crossbreeding of buffaloes are highlighted. A review of genetic inheritance of buffalo traits is presented as well as a discussion Of certain quality traits of buffaloes which deserve future research for improvement.

Estimation of Genetic Parameters for Daily Milk Yield, Somatic Cell Score, Milk Urea Nitrogen, Blood Glucose and Immunoglobulin in Holsteins

  • Ahn, B.S.;Jeon, B.S.;Kwon, E.G.;Khan, M. Ajmal;Kim, H.S.;Ju, J.C.;Kim, N.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.9
    • /
    • pp.1252-1256
    • /
    • 2006
  • This study estimated the effects of parity (1-3) and stage of lactation (early, mid and late) on daily milk yield (DMY), somatic cell score (SCS), milk urea nitrogen (MUN), blood glucose, and immunoglobulin G (IgG), their heritabilities and genetic correlations between them in Holsteins (n = 200). Means and standard deviations of DMY, SCS, MUN, blood glucose, and IgG in the experimental herd were $23.35{\pm}7.75kg$, $3.81{\pm}2.00$, $13.99{\pm}5.68mg/dl$, $44.91{\pm}13.12mg/dl$, and $30.36{\pm}6.72mg/ml$, respectively. DMY was the lowest in first parity, and in late lactation. SCS increased with parity; however, it was lowest in mid-lactation. MUN was lowest in first parity, and no difference was noted across stage of lactation. Blood glucose was similar between parities, however the highest blood glucose was observed during mid lactation. IgG level was significantly different between first and second parity; however, stage of lactation did not affect its level. Heritability of DMY was 0.16. Its genetic correlations with SCS and with blood glucose were -0.67 and 0.98, respectively. Heritability of SCS was 0.15. Genetic correlations of SCS with MUN, glucose, and IgG were -0.72, -0.59, and 0.68, respectively. Heritability of MUN was estimated to be 0.39 and had a genetic correlation of -0.35 with IgG. Heritabilities of blood glucose and IgG were 0.21 and 0.33, respectively. This study suggested that MUN, blood glucose and IgG could be considered important traits in future dairy selection programs to improve milk yield and its quality with better animal health and welfare. However, further studies are necessary involving more records to clarify the relationship between metabolic and immunological traits with DMY and its quality.

The effect of gender status on the growth performance, carcass and meat quality traits of young crossbred Holstein-Friesian×Limousin cattle

  • Pogorzelska-Przybylek, Paulina;Nogalski, Zenon;Sobczuk-Szul, Monika;Momot, Martyna
    • Animal Bioscience
    • /
    • v.34 no.5
    • /
    • pp.914-921
    • /
    • 2021
  • Objective: The objective of this study was to compare growth performance, carcass traits and meat quality in young bulls, steers and heifers produced by crossing Limousin bulls with Holstein-Friesian cows, fattened semi-intensively and slaughtered at 18 months of age. Methods: Thirty-one young calves were reared in a conventional production system, and were fed milk replacer, hay and concentrate. At 6 months of age, the animals were divided into groups based on gender, and were fed a total mixed ration composed of grass silage, concentrates I and II in a semi-intensive production system. At the end of the fattening period (18 months), the animals were slaughtered, carcass quality was evaluated, and samples of musculus longissimus thoracis were collected to determine the proximate composition and quality of meat. Results: Bulls were characterized by the highest percentage share of the most valuable cuts in the carcass, and three-rib sections from bull carcasses had the highest lean meat content with low intramuscular fat content (0.93%). No significant differences in carcass conformation, dressing percentage or the percentage share of round in the right half-carcass were found between bulls vs. steers and heifers. Heifers and steers had higher carcass fat content than bulls, which had a positive influence on the sensory properties of beef. In comparison with the meat of bulls, the meat of steers and heifers was characterized by more desirable physical properties and sensory attributes (water-holding capacity, shear force, color lightness, aroma, juiciness, tenderness, flavor). Conclusion: Under the semi-intensive production system, heifers and steers had higher carcass fat content than bulls, which had a positive effect on the sensory properties of beef. Bulls are better suited for intensive systems, which contribute to improving the quality of their meat. The results of this study may encourage producers to breed steers and heifers for beef.

LIFETIME PRODUCTION PERFORMANCE OF HOLSTEIN FRIESIAN × SAHIWAL CROSSBREDS

  • Chaudhry, M.Z.;Shafiq, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.8 no.5
    • /
    • pp.499-503
    • /
    • 1995
  • The performance records of 410 Holstein Friesian crossbred cows belonging to seven genetic groups (Fl, 3/4, 1/4, 5/8, 3/8, triple cross and miscellaneous cross) maintained at Livestock Production Research Institute, Bahadurnagar, Okara were analyzed for various parameters of lifetime traits. For the analysis 2 data sets were made. Data set I included all the cows disposed off from the herd which have completed at least one lactation while for data set II performance traits for only first five lactations were considered. The data was analyzed by Mixed Model Least squares and Maximum Likelihood computer programme PC-I version. The least squares means ${\times}$ standard errors for data set I (periods are in days and milk yield is in litres) were $994.5{\pm}15.5$, $1,877.0{\pm}70.9$, $1,651.9{\pm}19.3$, $2,533.7{\pm}36.5$, $3,530.0{\pm}40.5$, $15,785.2{\pm}320.0$, $8.46{\pm}0.19$, $5.66{\pm}0.16$ and $3.79{\pm}0.08$, respectively for age at first calving (APC), Ist lactation milk yield (FLMY), productive life (PL), herd life (HL), total life (TL), lifetime milk yield (LTMY), milk yield per day of productive life (MY/PL), milk yield per day of herd life (MY/HL) and milk yield per day of total life (MY/TL). For data set II these values were $1,004.2{\pm}21.2$, $2,220.5{\pm}113.1$, $1,429.1{\pm}40.8$, $2,302.1{\pm}73.3$, $3,307.2{\pm}77.3$, $13,189.7{\pm}667.4$, $9.10{\pm}0.34$, $5.66{\pm}0.25$ and $4.02{\pm}0.18$ in the same order. For data set I the effect of year of first calving was significant for AFC, FLMY, PL, HL, LTMY and MY/PL. The season of Ist calving was significant only for MY/PL. The effect of genetic group was significant for AFC, FLMY, MY/PL and MY/TL while the effect of parity was significant for all the traits. For data set II the effect of year of Ist calving was significant only for AFC, FLMY and PL while the season of Ist calving was significant for FLMY and PL while the effect of genetic groups was significant for MY/HL only. The lifetime production performance is in general close to the various estimates reported in the literature.