• Title/Summary/Keyword: Military vehicle

Search Result 532, Processing Time 0.025 seconds

Analysis of the Estimation of the Deflection and Hit Probability of a Gun Barrel of Next Infantry Fighting Vehicle (차기 보병전투장갑차 포신 처짐량 예측 및 명중률 분석)

  • Yoo, Sam-Hyeon;Chung, Dong-Yoon;Oh, Myoung-Ho;Shin, Nae-Ho;Nam, Suk-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • A gun barrel of infantry fighting vehicle is supported like a type of cantilever. Temperature of a gun barrel is increased by heat transfer due to the combustion of propellant charge during the firing. Thus, the muzzle of a gun barrel is deflected in accordance with its temperature and the accuracy rate is decreased by deflection of the muzzle. In this study, deflection of a gun barrel is estimated by measuring its restoration rate because measuring the deflection rate is difficult due to the vibration of the gun barrel during the firing. In order to obtain the relations between deflection rate and restoration rate of the 40mm gun barrel of Next Infantry Fighting Vehicle(NIFV) under varying temperature, measurement of deflection rate and restoration rate is carried out using 5.56mm Remington rifle barrel. Effect of the estimated deflection rate of a gun barrel of NIFV on the hit probability is also analyzed.

Development of Lane and Vehicle Headway Direction Recognition System for Military Heavy Equipment's Safe Transport - Based on Kalman Filter and Neural Network - (안전한 군용 중장비 수송을 위한 차선 및 차량 진행 방향 인식 시스템 개발 - 칼만 필터와 신경망을 기반으로 -)

  • Choi, Yeong-Yoon;Choi, Kwang-Mo;Moon, Ho-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2007
  • In military transportation, the use of wide trailer for transporting the large and heavy weight equipments such as tank, armoured vehicle, and mobile gunnery is quite common. So, the vulnerability of causing traffic accidents for these wide military trailer to bump or collide with another car in adjacent lane is very high due to its broad width in excess of its own lane's width. Also, the possibility of these strayed accidents can be increased especially by the careless driver. In this paper, the recognition system of lane and vehicle headway direction is developed to detect the possible collision and warn the driver to prevent the fatal accident. In the system development, Kalman filtering is used first to extract the border of driving lane from the video images supplied by the CCD camera attached to the vehicle and the driving lane detection is completed with regression analysis. Next, the vehicle headway direction is recognized by using neural network scheme with the extracted parameters of the detected driving lane feature. The practical experiments for the developed system are also carried out in the real traffic road of Seoul city area and the results show us the more than 90% accuracy in recognizing the driving lane and vehicle headway direction.

Motion Analysis of an Underwater Vehicle Running near Wave Surface (파랑수면 근처에서 항주하는 수중운동체의 운동해석)

  • Yoon, Hyeon Kyu;Ann, Seong Phil;Jung, Chulmin;Kim, Chan-Ki
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.395-403
    • /
    • 2016
  • A cylinder-type underwater vehicle for military use that is running near the free surface at the final homing stage to hit a surface ship target is affected by wave force and moment. Since wave can affect an underwater vehicle running at the depth less than half of the modal wave length, it is important to confirm that the underwater vehicle can work well in such a situation. In this paper, wave force and moment per unit wave amplitude depending on wave frequency, wave direction, and vehicle's running depth were calculated by 3-Dimensional panel method, and the numerical results were modeled in external force terms of six degrees of freedom equations of motion. Motion simulation of the underwater vehicle running in various speed, depth, and sea state were performed.

A Study on Maintainability Improvement for Underwater Weapon Training Vehicle (수중무기 훈련탄의 정비성 향상방안 연구)

  • Jeong, Jinseob
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.111-117
    • /
    • 2013
  • In this paper, we have proposed novel technique to improve maintainability for training vehicle of underwater weapon system. In case of under water weapon, the fire procedure is related with operation of expulsion system in submarines. So the submarine crews should practice the complex fire procedure of weapon system by using training vehicle, which is safer and cheaper than operational weapon. After emitted from submarine, the training vehicle rise to the surface and should be withdrawn from the sea. The recovered training vehicle is transported to maintenance depot and pass through the recycling procedure including disassembling the vehicle, data acquisition & analysis, battery charge, replacing expandable components, testing the captive equipment, and assembling the vehicle. The disassembling & assembling of training vehicle which is composed of watertight section or airframe, is time-consuming work. So in this paper, we have studied the elements of recycling procedure and propose the method to exclude the assembling & disassembling work for maintainability improvement.

Vibration reduction of military vehicle frame with using structural dynamic characteristics analysis (구조 동특성 분석을 통한 군용 차량 프레임 진동 저감)

  • Lee, Sang-Jeong;Park, Jong-Beom;Park, No-Cheol;Lee, Jong-Hak;Kim, Han-Shang;Jeong, Eui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.281-284
    • /
    • 2014
  • Unlike ordinary vehicle chassis frame, chassis frame of military vehicle is long and that is operated in harsh driving environment in middle of war. Thus, because large dynamic loads is acting on the frame, it is important to secure the durability of the frame based on the structural dynamic characteristic analysis. The purpose of the study is that the chassis frame is optimized to secure durability of the chassis frame of the military vehicle according to the structural dynamic characteristic analysis. Also, structure optimization are performed using parametric optimization and topology optimization methods.

  • PDF

A Fundamental Study on Integrated Dynamic Control of 6WD/6WS Vehicle (6WD/6WS 차량의 통합운동제어에 관한 기초적 연구)

  • Kim, Young-Ryul;Park, Young-Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.958-966
    • /
    • 2010
  • In this paper, we have proposed a integrated dynamic control architecture in 6WD(wheel drive)/6WS(wheel steering) vehicle for military applications. Since 6WD/6WS vehicle has inherent redundancy, the input variables to make any desired vehicle motion can not be determined uniquely. Therefore, optimal distribution method of tire forces is introduced, which is based on workload of each tire. Simulation result shows that this is effective for the energy minimization and dynamic performance enhancement. We also suggest how the integrated control with any failure mode should be reconstructed.

Design of the Electro-magnetic Compatibility(EMC) for Hybrid Electric Propulsion System (고전력 하이브리드 추진시스템의 전자파 적합성 설계 대책)

  • Lim, Jong-Kwang;Chang, Kyo-Gun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.366-373
    • /
    • 2012
  • In this paper, serious changes in the electromagnetic environment with increasing power and energy capabilities for electric driving and military mission are discussed. Design and control strategies on the Electro-Magnetic Compatibility(EMC) for the series hybrid electric vehicle are proposed to minimize the effects of electromagnetic interferences.

Parameter Sensitivity Analysis for Full Vehicle Model (전차량모델에 대한 설계변수 민감도 해석)

  • Nam, Kyung-Mo;Ha, Tae-Wan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.827-831
    • /
    • 2012
  • Passengers and mounted equipments on a vehicle are exposed to the vibration when it is driven on the road. To minimize the vibration and improve the dynamic characteristics of a vehicle are important factors. Those are changed by modifying parameters of the vehicle. To save development cost and time, simulation methods using vibration model have been widely used before making the real vehicle. In this paper two aimed functions, displacement between wheels and the body and acceleration of the body, have been defined for the parameter sensitivity analysis of the large vehicle. Full Vehicle Model having 11 degrees of freedom applied to solve those issues.

Performance Evaluation of 6WD Military Vehicle Featuring MR Damper (MR 댐퍼를 적용한 6WD 군용차량의 성능평가)

  • Ha, Sung-Boon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.460-465
    • /
    • 2008
  • This paper proposes a new type of MR (magentorheological) fluid based suspension system and applies it to military vehicle for vibration control. The suspension system consists of gas spring and MR damper. The nonlinear behavior of spring characteristics is evaluated with respect to the wheel travel and damping force model due to viscosity and yield stress of MR fluid is derived. Subsequently, a military vehicle of 6WD is adopted for the integration of the MR suspension system and its nonlinear dynamic model is establishes by considering vertical, pitch and roll motion. Then, a sky-hook controller associated with semi-active actuating condition is designed to reduce the vibration. In order to demonstrate the effectiveness of the proposed MR suspension system, computer simulation is undertaken showing vibration control performance such as roll angle and pitch angle evaluated under bump and random road profiles.

  • PDF

A Study on the Effect of the Pressure Control of Cooperative Control System with Regenerative Brake for a Military SHEV (군용 직렬형 하이브리드 전기 차량을 위한 회생제동 협조제어 시스템의 압력제어 영향에 관한 연구)

  • Jeong, Soonkyu;Choi, Hyunseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.517-525
    • /
    • 2016
  • In this research, the effect of the pressure control of cooperative control system with regenerative brake for a military series hybrid-electric vehicle was studied. A cooperative control system with regenerative brake was developed to maximize regenerative energy from electric traction motors of the vehicle. However, the pressure control method of the system was modified to solve a time delay problem and it deteriorates the performance of the system. A Simulink model including the hybrid-electric components, the cooperative control system with regenerative brake, and the vehicle dynamics was developed and used to find a solution. The regenerative energy ratio with respect to the whole brake energy was increased in this research from less than 60 % to over 80 %.