• Title/Summary/Keyword: Middle distillates

Search Result 4, Processing Time 0.019 seconds

A Review of Domestic Research Trends of Fischer-Tropsch for the Production of Light Hydrocarbons and Middle Distillates From Syngas (합성가스로부터 경질탄화수소 및 중산유분을 생산하기 위한 Fischer-Tropsch의 국내연구동향)

  • Kim, Jin-Ho;Kim, Hyo-Sik;Kim, Ji-Hyeon;Ryu, Jae-Hong;Kang, Suk-Hwan;Park, Myung-June
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.565-574
    • /
    • 2019
  • Fischer-Tropsch synthesis process is a typical method for synthesizing hydrocarbons from syngas and is mainly known as iron (Fe) and cobalt (Co) catalysts. Currently, some technologies such as CTL (Coal to Liquid) and GTL (Gas to Liquid) are operated on a commercial scale depending on the products, but the research to produce light hydrocarbons and middle distillates directly has not been commercialized. Therefore, in this study, domestic studies for direct production of light hydrocarbons and middle distillates are summarized and the effect of catalyst preparation, promoter addition, zeolite combination on product selectivity is investigated.

Physicochemical Characteristics of Bamboo Smoke Distillates Processed by Mechanical Steel Kiln and Traditional Earth Kiln (기계식 탄화로와 재래식 토요를 이용하여 제조한 죽초액의 이화학적 특성: 식품처리제로서의 특성)

  • 이범수;은종방
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.2
    • /
    • pp.251-256
    • /
    • 2002
  • Fresh bamboo (Phyllostachys bambuoides sieb. et zucc.) was charred at the mechanical steel kiln and traditional earth kiln with subsequent condensation of its smoke to 10$0^{\circ}C$. It was settled down for 12 months to remove tar components and then the middle layer of the liquid was collected as a bamboo smoke distillates to analyze its chemical composition and physicochemical characteristics for use as food additives or processing aids. The gravity, transmittance, reflectivity, and viscosity were 1.008, 89.05%, 1.36%, and 12.48 cp in the bamboo smoke distillates processed by mechanical steel kiln (MBSD) and 1.012, 98.33%, 1.34% and 9.05 cp in the bamboo smoke distillates by traditional earth kiln (TBSD), respectively. The color of TSBD was brighter than that of MBSD. The pH and titratable acidity, tar and remains were 3.55 and 2.830%, 2.803% and 0.671%, respectively, in the MBSD and 2.93 and 3.470%, 0.051% and 0.004%, respectively, in the TBSD. The major phenolic compounds of bamboo smoke distillates (BSD) were phenol, Ο-cresol, p-cresol, and guaiacol and the major organic acids were acetic acid, propionic acid, iso-butyric acid, and n-butyric acid, and major alcohols were methanol, furfuryl alcohol, and maltol. The contents of phenolic compound and alcohol were more in MBSD than in TBSD whereas the content of organic acid was more in TBSD than in MBSD. Therefore, toxic compounds for the human body, such as methanol from BSD should be removed for use as a food ingredient in the future.

Researches Trend to Produce Jet-fuel from Fischer-Tropsch Wax (Fischer-Tropsch 왁스로부터 항공유제조를 위한 촉매연구동향)

  • Park, Eun-Duck;Park, Myung-June;Kim, Yun-Ha;Kim, Myoung-Yeob;Jeong, Soon-Yong;Han, Jeong-Sik;Jeong, Byung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.793-794
    • /
    • 2010
  • Fischer-Tropsch(F-T) reaction, in which syngas($H_2+CO$) is transformed into liquid fuels, has attracted much attention recently due to the limited reservoir of petroleum. The formed F-T wax can be converted into various liquid fuels, such as gasoline, diesel, jet fuel, lubricants, etc., through the hydrocracking reaction. To carry out the hydrocracking reaction, the bifunctional catalyst is required, in which hydrogenation/dehydrogenation occurs over metal and cracking proceeds over solid acid sites. In this contribution, we review the reported hydrocracking catalysts and summarize some process variables (feed compositions, reaction temperature and reaction pressure) for each catalyst.

  • PDF

The Chemical Aspects on Hydrotreating Catalysis for Residue (잔사유의 수소화처리 촉매공정에 대한 화학적 고찰)

  • Jeon, Min-Seok;Lee, Youngjin;Jung, Hoi-Kyoeng;Kim, Hyung-Jong;Yoon, Seong-Ho;Kim, Taegon;Park, Joo-Il
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.455-460
    • /
    • 2019
  • Hydrotreating catalysis refers to a various hydrogenation which saturate an unsaturated hydrocarbon, together with removing heteroatoms such as sulfur, nitrogen, oxygen, and trace metals from different petroleum streams in a refinery. Most refineries include at least three hydrotreating units for upgrading naphtha, middle distillates, gas oils, intermediate process streams, and/or residue. Among them, hydrotreating catalysis for residue are the core of the process, because of its complexity. This article reviews recent progress in tackling the issues found in the upgrading residues by hydrotreating, focusing on the chemistry of hydrodemetallization (HDM) and hydrodesulfurization (HDS). We also discuss the composition and functions of hydrotreating catalysts, and we highlight areas for further improvement.