• Title/Summary/Keyword: Microwave hydrothermal

Search Result 36, Processing Time 0.024 seconds

Nitrogen and Fluorine Co-doped Activated Carbon for Supercapacitors

  • Kim, Juyeon;Chun, Jinyoung;Kim, Sang-Gil;Ahn, Hyojun;Roh, Kwang Chul
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.338-343
    • /
    • 2017
  • Activated carbon has lower electrical conductivity and reliability than other carbonaceous materials because of the oxygen functional groups that form during the activation process. This problem can be overcome by doping the material with heteroatoms to reduce the number of oxygen functional groups. In the present study, N, F co-doped activated carbon (AC-NF) was successfully prepared by a microwave-assisted hydrothermal method, utilizing commercial activated carbon (AC-R) as the precursor and ammonium tetrafluoroborate as the single source for the co-doping of N and F. AC-NF showed improved electrical conductivity ($3.8\;S\;cm^{-1}$) with N and F contents of 0.6 and 0.1 at%, respectively. The introduction of N and F improved the performance of the pertinent supercapacitor: AC-NF exhibited an improved rate capability at current densities of $0.5-50mA\;cm^{-2}$. The rate capability was higher compared to that of raw activated carbon because N and F codoping increased the electrical conductivity of AC-NF. The developed method for the co-doping of N and F using a single source is cost-effective and yields AC-NF with excellent electrochemical properties; thus, it has promising applications in the commercialization of energy storage devices.

Chemoselective Alkylation of Aromatics with Benzyl Alcohol over Mesoporous ZSM-5

  • Jin, Hailian;Ansari, Mohd Bismillah;Jeong, Eun-Young;Park, Sang-Eon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.200-200
    • /
    • 2011
  • Hierarchical mesoporous ZSM-5 with enhanced mesoporosity was synthesized by microwave through the rapid assembly via ionic interaction between sulfonic acid functionalized ZSM-5 nano particles and cationic surfactant. The catalytic performance of enhanced accessibility due to mesoporosity and acidity were investigated in the alkylation of mesitylene with benzyl alcohol as alkylating agent. The effect of mole ratio of aromatic with benzyl alcohol, reaction time and alkylation agent were also studied. The enhanced mesoporosity and acidity of sulfonic acid functionalized mesoporous ZSM-5 induced activity enhancement compared with non-functionalized mesoporous ZSM-5, sulfonic functionalized mesoporous ZSM-5 synthesized by hydrothermal method and conventional microporous ZSM-5. The sulfonic acid functionalized mesoporous ZSM-5 showed much higher chemoselectivity of benzylated mesitylene than others, whereas the others mainly show dibenzyl ether as product. This significant difference in catalytic selectivity was resulted from the existence of mesopores, which definitely allowed the benzylation in mesopores.

  • PDF

The Study on the Fabrication Process and the Microwave Characteristics of YIG ferrites by Using Wet Processing (습식합성법을 이용한 YIG-ferrites의 제조공정과 마이크로파 특성 연구)

  • 양승진;윤종남;김정식
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.181-184
    • /
    • 2002
  • 본 연구에서는 아이솔레이터(Isolator)의 핵심소재로 사용되는 YIG-ferrites를 수열합성법에 의해 초미세 분말로 합성하고, 합성된 분말을 원료로 사용하여 제조 공정된 YIG-ferrites 소결체의 미세구조와 전자기적 특성에 관하여 고찰하였다. 수열합성법(Hydrothermal synthesis method)으로 YIG[ $Y_3$F $e_{5}$ $O_{12}$]분말을 먼저 합성하고 Ca, V, In, Al 등을 첨가시킴으로서 $Y_{2.1}$C $a_{0.9}$ $Y_{4.4}$ $V_{0.5}$I $n_{0.05}$ $O_{12}$의 조성을 지닌 시편을 제조하였다. 초기열처리는 30$0^{\circ}C$에서 90$0^{\circ}C$의 온도 범위에서 15$0^{\circ}C$간격으로 진행하였다.. 그 결과 75$0^{\circ}C$로 초기열처리 하였을 경우 단일 YIG peak가 나타남을 알 수 있었다. 수열합성법으로 제조된 YIG 소결시편의 전자기적 특성은 일반 시약급원료를 사용하여 제조된 소결시편과 비교하여 마이크로파 특성을 평가하였다. 그밖에 YIG-ferrites의 결정성, 미세구조, 자기적 특성, 마이크로파 특성을 XRD, SEM, VSM, Network Analyzer를 이용하여 고찰하였다.여 고찰하였다.다.다.다.다.

  • PDF

Effect of Surfactants on ZnO Synthesis by Hydrothermal Method and Photocatalytic Properties (계면활성제 첨가에 의한 산화아연의 수열합성과 광촉매 특성)

  • Hyeon, Hye-Hyeon;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • Zinc oxide is, one of metal oxide semiconductor, harmless to human and environment-friendly. It has excellent chemical and thermal stability properties. Wurtzite-zinc oxide is a large band gap energy of 3.37 eV and high exciton binding energy of 60 meV. It can be applied to various fields, such as solar cells, degradation of the dye waste, the gas sensor. The photocatalytic activity of zinc oxide is varied according to the particle shape and change of crystallinity. Therefore, It is very important to specify the additives and the experimental variables. In this study, the zinc oxide were synthesized by using a microwave assisted hydrothermal synthesis. The precursor was used as the zinc nitrate, the pH value was controlled as 11 by NaOH. Surfactants are the ethanolamine, cetyltrimethylammonium bromide, sodium dodecyl sulfate, sorbitan monooleate was added by changing the concentration. The composite particles had the shape of a star-like, curcular cone, seed shape, flake-sphere. Physical and chemical properties of the obtained zinc oxide was characterized using x-ray diffractometer, field emission scanning electron microscopy, thermogravimetric analysis and optical properties was characterized using UV-visible spectroscopy, photoluminescence and raman spectroscopy.

Preparation and characterization of g-C3N4/NaTaO3 composite and their photocatalytic activity under simulated solar light (g-C3N4/NaTaO3 복합체의 제조 및 태양광 조사 하에서의 광촉매 특성 평가)

  • Park, Ji-Su;Kim, Tae-Ho;Jo, Yong-Hyeon;Lee, Su-Wan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.264-265
    • /
    • 2014
  • This Paper reports the photocatalytic activity of $g-C_3N_4/NaTaO_3$ hybrid composite photocatalysts synthesized by ball-mill method. The $g-C_3N_4$ and $NaTaO_3$ were individually prepared by Solid state reaction and microwave hydrothermal process, respectively. The $g-C_3N_4/NaTaO_3$ composite showed the enhanced photocatalytic activity for degradation of rhodamine B dye (Rh. B) under simulated solar light irradiation. The results revealed that the band-gap energy absorption edge of hybrid composite samples was shifted to a longer wavelength as compared to $NaTaO_3$ and the 50 wt% $g-C_3N_4/NaTaO_3$ hybrid composite exhibited the highest percentage (99.6 %) of degradation of Rh. B and the highest reaction rate constant ($0.013min^{-1}$) in 4 h which could be attributed to the enhanced absorption of the hybrid composite photocatalyst in the UV-Vis region. Hence, these results suggest that the $g-C_3N_4/NaTaO_3$ hybrid composite exhibits enhanced photocatalytic activity for the degradation of rhodamine B under simulated solar light irradiation in comparison to the commercial $NaTaO_3$.

  • PDF

Particle Shapes and Optical Property of Synthesized ZnO with Amine Additives (아민첨가제를 사용하여 합성된 ZnO의 입자형상 및 광학적 특성)

  • Hyeon, Hye-Hyeon;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • Zinc oxide of hexagonal wurzite, is known as n-type semiconductor. It has a wide band gap energy of 3.37 eV and large exciton binding energy of 60 meV. It can be widely applied to gas sensors, laser diodes, dye-sensitized solar cells and degradation of dye waste. The use of microwave hydrothermal synthesis brings a rapid reaction rate, high yield, and energy saving. Amine additives control the different particle shapes because of the chelate effect and formation of hydroxide ion. In this study, zinc nitrate hexahydrate was used as zinc precursor. In addition, ethanolamine, ethylenediamine, diethylenetriamine, and hexamethylenetetramine are used as shape control agent. The pH value was controlled as 11 by NaOH. The shapes of zinc oxide are star-like, rod, flower-like, and circular cone. In order to analyze physical, chemical, and optical properties of ZnO with diverse amine additives, we used XRD, SEM, EDS, FT-IR, UV-Vis spectroscopy, and PL spectroscopy.