• Title/Summary/Keyword: Microwave discharge

Search Result 62, Processing Time 0.03 seconds

Electrochemical Characterization of Tin Oxide Prepared by Microwave Heating (마이크로파로 합성한 주석산화물의 전기화학적 특성)

  • Kim, Won-Tae;Lee, Eu-Kyung;Cho, Byung-Won;Lee, Joong-Kee;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1119-1123
    • /
    • 2008
  • Tin oxide was prepared by microwave heating for anode material of lithium ion battery. The samples were heated at 300, 500 and $700^{\circ}C$ for 3h under flowing oxygen after microwave heating. The effect of microwave heating on the electrochemical performance of the manufactured tin oxide and the reversible capacity performance were investigated. Tin oxide heated at $500^{\circ}C$ showed higher capacity than those at $300^{\circ}C$ and $700^{\circ}C$ under microwave heating condition. Comparing microwave and furnace heating, microwave heating condition showed higher capacity. The discharge capacity after microwave heating and $500^{\circ}C$ heating showed 1,500 mAh/g.

A Study on the Microwave Reflection of Plasma in a Magnetic Field (방전프라즈마내 자계에 의한 마이크로파 반사특성)

  • 김봉열;김정기
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.6 no.1
    • /
    • pp.12-18
    • /
    • 1969
  • The characteristics of microwave reflection in the media of cold gaseous plasma is analysed to various external magnetic flux density. The DC discharge plasma is generated in the rectangular waveguide which contains two electrodes and helium gas at the pressure of 10-2mm Hg. The reflected and transmitted power of microwave is measured when the electric field is parallel to, and perpendicular to the external magnetic field. It shows that the reflected power is increased as the magnetic flux density is increased in the parallel case, but the maximum value of the reflected power is occured at the cyclotron resonance (3120 Gauss) in the perpendicular case.

  • PDF

Measurement of Discharge Using the Entropy Concept (엔트로피 개념에 의한 유량측정 기법)

  • Choo, Tai-Ho;Lee, Seung-Kwan
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.342-346
    • /
    • 2006
  • The method presented is also efficient and applicable in estimating the discharge in high flows that are very difficult or impossible to measure before, due to technical or theoretical reasons. The method can drastically reduce the time and cost of measurement, regardless of the irregularity in the geometrical shape. With Microwave Water Surface Velocity Meter, An entropy based method for determining the discharge in the rivers can be used to develop real-time discharge measurement system (RDMS) which can carry out the real-time inflow hydrograph.

  • PDF

Using the TDR in Dielectric for Partial Discharge Signals Detection Method (이종 비유전율에서 TDR을 이용한 PD발생 위치 추적방법)

  • Choi, Mun-Gyu;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1374-1379
    • /
    • 2015
  • Time Domain Reflectometry(TDR) using microwave bands, including broadband spectrum that occurs at the range of rates that start between partial discharge position it easier to make the techniques that could be measured. Partial discharge in the Gas Insulated Switchgear(GIS), the dielectric constant in the band more than GHz different the insulating material if you want to organize, and the insulating material regardless of how partial discharge position in the SF6 gas Partial Discharge by applying the heritability estimated its position, but the position error occurred about 23 percent of the existing way, correct in not suitable location tracking the outbreak PD. This technique the rate of other dielectric that make up the power apparatus heterology is measured at the function to slow the progression of the electromagnetic waves apart by calculating the partial discharge as the location, A simple way to track. Dielectric using other methods proposed new structure can calculate the speed of heritability PD is occurring can measure.

Comparison of the Accuracy of Velocity Measurement Using LSPIV (LSPIV를 이용한 유속측정 정확도 비교)

  • Hwang Eui-Ho;Yang Jae-Rheen;Koh Deuk-Koo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1512-1517
    • /
    • 2005
  • Soil particles from rainfall flow into reservoir and give lots of influence in water quality because the Even though techniques related with computer and communications are growing rapidly, it is true that efforts for hydrological survey and the management of its results have not been made enough to make use of the state-of-the-art technologies. Among the water-related techniques, measurement of river discharge is the most important one because these data are basic to almost every field of the hydrological science. In this research, a large-scale particle image velocimetry (LSPIV) unit has been designed and constructed to measure river discharge effectively In field conditions. Measured data using this unit is compared with the results recorded by the microwave water surface current meter (MWSCM) at the same location. The purpose of this research is to propagate the feasibility of using the MWSCM for river discharge velocimetry.

  • PDF

A Study on Adsorption Characteristics of Benzene over Activated Carbons Coated with Insulating Materials and Desorption by Microwave Irradiation (절연물질이 코팅된 활성탄의 벤젠 흡착특성 및 마이크로파에 의한 탈착에 관한 연구)

  • Kim, Ki-Joong;Ahn, Ho-Geun
    • Applied Chemistry for Engineering
    • /
    • v.19 no.4
    • /
    • pp.445-451
    • /
    • 2008
  • In order to regenerate the activated carbon polluted by volatile organic compounds (VOCs) using microwave, adsorption and desorption characteristics of benzene over activated carbon (AC) coated with insulating materials were investigated. Physical characteristics of activated carbon and insulator-coated ACs were investigated by means of $N_2$ gas adsorption and scanning electron microscopy (SEM). The amount of VOC adsorbed showed a positive relationship with the specific surface area of the ACs, and spark discharge over insulator-coated ACs did not occur. Potassium silicate (PS) was the best binder for coating of insulating materials on AC. Amount of benzene desorbed by microwave irradiation was dependent on output power of microwave. Nearly same performance was obtained even though the adsorption-desorption operation under microwave irradiation was repeated 5 times. Finally, it was known that the microwave heating was a very effective mean for regenerating the polluted AC.

Characterization of Linear Microwave Plasma using the Fluid Simulation (유체 시뮬레이션을 이용한 선형 마이크로웨이브 플라즈마의 특성 분석)

  • Seo, Kwon-Sang;Han, Moon-Ki;Kim, Dong-Hyun;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.4
    • /
    • pp.567-572
    • /
    • 2015
  • Discharge characteristics of linear microwave plasma were investigated by using fluid simulation of 2D axis-symmetry based on finite elements method. The microwave power was 2.45 GHz TEM mode and transmitted through linear antenna. Resistive power and pressure were considered simulation variables and argon was used for working gas. A decrease of electron density along the quartz tube was observed in low power condition but relatively uniform plasmas were generated in chamber by increasing the resistive power. The electron temperature was highly detected near the surface of quartz tube because the electron was heated only dielectric surface. The power transmission efficiency decreased and characteristics of surface plasma were observed in high electron density condition.

Application and Comparative Analysis of River Discharge Estimation Methods Using Surface Velocity (표면유속을 이용한 하천 유량산정방법의 적용 및 비교 분석)

  • Jae Hyun, Song;Seok Geun Park;Chi Young Kim;Hung Soo Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.15-32
    • /
    • 2023
  • There are some difficulties such as safety problem and need of manpower in measuring discharge by submerging the instruments because of many floating debris and very fast flow in the river during the flood season. As an alternative, microwave water surface current meters have been increasingly used these days, which are easy to measure the discharge in the field without contacting the water surface directly. But it is also hard to apply the method in the sudden and rapidly changing field conditions. Therefore, the estimation of the discharge using the surface velocity in flood conditions requires a theoretical and economical approach. In this study, the measurements from microwave water surface current meter and rating curve were collected and then analyzed by the discharge estimation method using the surface velocity. Generally, the measured and converted discharge are analyzed to be similar in all methods at a hydraulic radius of 3 m or over or a mean velocity of 2 ㎧ or more. Besides, the study computed the discharge by the index velocity method and the velocity profile method with the maximum surface velocity in the section where the maximum velocity occurs at the high water level range of the rating curve among the target locations. As a result, the mean relative error with the converted discharge was within 10%. That is, in flood season, the discharge estimation method using one maximum surface velocity measurement, index velocity method, and velocity profile method can be applied to develop high-level extrapolation, therefore, it is judged that the reliability for the range of extrapolation estimation could be improved. Therefore, the discharge estimation method using the surface velocity is expected to become a fast and efficient discharge measurement method during the flood season.

Electrochemical Characteristics of the Activated Carbon Electrode Modified with the Microwave Radiation in the Electric Double Layer Capacitor (전기이중층캐패시터에서 마이크로파에 의해 개질된 활성탄소전극의 전기화학적 특성)

  • Sun, Jin-Kyu;Um, Eui-Heum;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.11-17
    • /
    • 2010
  • Modifying surface of activated carbon for the electrode of EDLC with an organic electrolyte was investigated to improve the electrochemical performance of EDLC by the microwave radiation. Three kinds of activated carbons, prepared activated carbon from petroleum cokes and pitch cokes and commercial activated carbon BP-25, were used for this study. For all investigated activated carbons, hydrophilic functional groups-containing oxygen disappeared from the surface of activated carbon as microwave radiation. And as microwave radiation time was increased, the specific surface area and total pore volume of activated carbons were reduced and average pore diameter were increased. From theses effects, interfacial resistance of EDLC with the modified activated carbon electrode was drastically decreased, and discharge capacitance was increased although the specific surface area of activated carbon was reduced by this microwave radiation.

Cavity-backed Two-arm Spiral Antenna with a Ring-shaped Absorber for Partial Discharge Diagnosis

  • Kim, Han-Byul;Hwang, Keum-Cheol;Kim, Hyeong-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.856-862
    • /
    • 2013
  • A cavity-backed two-arm spiral antenna for partial discharge diagnosis is presented. The proposed antenna consists of a two-arm Archimedean spiral, a tapered microstrip balun as spiral antenna feed, and a ring-shaped absorber-loaded cavity. The Archimedean spiral antenna is designed for the operating frequency band of 0.3 GHz to 1.5 GHz and fed by the tapered microstrip balun. The cavity is utilized to transform the bidirectional beam into a unidirectional beam, thereby enhancing gain. The ring-shaped absorber is stacked in the cavity to reduce the reflected waves from the cavity wall. The proposed antenna is designed and simulated using CST Microwave Studio. A prototype of the proposed antenna is likewise fabricated and tested. The measured radiation patterns are directional to the positive z-axis, and the measured peak gain is 8.13 dBi at a frequency of 1.1 GHz.