• Title/Summary/Keyword: Microwave Plasma

Search Result 398, Processing Time 0.035 seconds

A Kinetic Study on the Growth of Nanocrystalline Diamond Particles to Thin Film on Silicon Substrate

  • Jung, Doo-Young;Kang, Chan-Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.4
    • /
    • pp.131-136
    • /
    • 2011
  • A kinetic study has been made for the growth of nanocrystalline diamond (NCD) particles to a continuous thin film on silicon substrate in a microwave plasma chemical vapor deposition reactor. Parameters of deposition have been microwave power of 1.2 kW, the chamber pressure of 110 Torr, and the Ar/$CH_4$ ratio of 200/2 sccm. The deposition has been carried out at temperatures in the range of $400\sim700^{\circ}C$ for the times of 0.5~16 h. It has been revealed that a continuous diamond film evolves from the growth and coalescence of diamond crystallites (or particles), which have been heterogeneously nucleated at the previously scratched sites. The diamond particles grow following an $h^2$ = k't relationship, where h is the height of particles, k' is the particle growth rate constant, and t is the deposition time. The k' values at the different deposition temperatures satisfy an Arrhenius equation with the apparent activation energy of 4.37 kcal/mol or 0.19 eV/ atom. The rate limiting step should be the diffusion of carbon species over the Si substrate surface. The growth of diamond film thickness (H) shows an H = kt relationship with deposition time, t. The film growth rate constant, k, values at the different deposition temperatures show another Arrhenius-type expression with the apparent activation energy of 3.89 kcal/mol or 0.17 eV/atom. In this case, the rate limiting step might be the incorporation reaction of carbon species from the plasma on the film surface.

Morphology of Carbon Nanotubes Prepared by Methane Plasma CVD (메탄 플라즈마 CVD법으로 합성한 탄소나노튜브의 구조적 특성)

  • Kim, Myung-Chan;Moon, Seung-Hwan;Lim, Jae-Seok;Hahm, Hyun-Sik;Park, Hong-Soo;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.289-299
    • /
    • 2004
  • Multi-walled carbon nanotubes (CNTs) were prepared by microwave plasma chemical vapor deposition (MPCVD) using various combination of binary catalysts and methane precursor. The maximum yield (10.3 %) of CNTs was obtained using a methane-hydrogen-nitrogen mixture with volume ratio of 1:1:2 at 1000 W of microwave power. As the microwave power increased up to 1000 W, the deposition yield of CNTs raised from 4.1 % to 10. 3 %. However, the prepared CNTs at 800 W showed the more crystalline structure than those prepared at 1000 W. The prepared CNTs over different binary catalysts had various structural conformations such as aligned cylinder, bamboo, and nanofibers. The Id/Ig value of CNTs over$Fe-Fe/Al_2O_3, $Co-Co/Al_2O_3, and $Co-Cu/Al_2O_3 were in the range of 0.89${\sim}$0.93. Among the various binary catalysts used, $Fe-Co./Al_2O_3 showed the highest yield.

Microwave Propagation in the Plasma for 28 GHz Superconducting ECRIS (28 GHz 초전도 ECRIS 플라즈마에서의 마이크로파 전파)

  • Wang, S.J.;Won, M.S.;Lee, B.S.;Kim, S.H.;Kwak, J.G.;Jeong, S.H.;Kim, S.K.;An, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.467-474
    • /
    • 2010
  • Packet propagation and absorption for the 28 GHz superconducting ECRIS under developing by KBSI Pusan center is analyzed with limited parameter range. The microwave power generated by 28 GHz gyrotron is axially injected to the plasma cavity through waveguide system. According to the analytical ray tracing calculation, the wave packet launched quasi-longitudinally at a high magnetic field side changes its direction from outward to inward as it is approaching resonance layer. Therefore, initially diverging wave does not likely hit a conducting surface before absorbing by electron cyclotron resonance. Also, absorption by plasma with moderate electron density is so strong that reflection by an extraction plate may not be expected.

Millimeter-Scale Aligned Carbon Nanotubes Synthesized by Oxygen-Assisted Microwave Plasma CVD (MPCVD를 이용하여 밀리미터 길이로 수직 정렬된 탄소나노튜브의 합성)

  • Kim, Y.S.;Song, W.S.;Lee, S.Y.;Choi, W.C.;Park, C.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2009
  • Millimeter-scale aligned arrays of thin-multiwalled carbon nanotube (t-MWCNT) on layered Si substrates have been synthesized by oxygen-assisted microwave plasma chemical vapor deposition (MPCVD). We have succeeded in growth of vertically aligned MWCNTs up to 2.7 mm in height for 150 min. The effect of $O_2$ and water vapour on growth rate was systematically investigated. In the case of $O_2$ gas, the growth rate was ${\sim}22{\mu}m/min$, which is outstanding growth rate comparing with those of conventional thermal CVD (TCVD). Scanning electron microscope (SEM), energy-dispersive spectroscopy (EDS), and Raman spectroscopy were used to analyze the CNT morphology, composition and growth mechanism. The role of $O_2$ gas during the CNT growth was discussed on.

Inactivation of Foodborne Pathogenic Bacteria in Corn Silk Tea Using a Microwave Plasma Sterilization System (Microwave Plasma Sterilization System 처리가 옥수수수염 차의 저장 중 Escherichia coli 및 Listeria monocytogens의 생육 저해에 미치는 영향)

  • Yu, Dong-Jin;Choi, Dong-Won;Shin, Yoon-Ji;Song, Hye-Yean;Song, Kyung-Bin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1195-1199
    • /
    • 2011
  • Inactivation of foodborne pathogenic bacteria in corn silk tea was evaluated using a microwave plasma sterilization system (MPSS). Corn silk tea was inoculated with Escherichia coli and Listeria monocytogenes, treated with an MPSS treatment, and stored at 25$^{\circ}C$ for 12 days. The one, two, and three cycles of treatment with MPSS reduced the population of E. coli by 1.14, 2.49, and 5.72 log CFU/mL, respectively, compared to that of the control. In the case of L. monocytogenes, one, two, and three cycles of MPSS treatment reduced the population by 1.93, 4.49, and 6.62 log CFU/mL, respectively. Both E. coli and L. monocytogenes were eliminated within four cycles of treatment with MPSS, and even after 12 days of storage, the bacteria were not detected. Total polyphenol content in the corn silk tea did not change much among treatments, and turbidity of the corn silk tea improved following four cycles of MPSS treatment. These results suggest that MPSS treatment can be useful for improving the microbial safety and quality of corn silk tea during storage.

Luminous phosphor with modified surface composition and microwave treatment for plasma planar back light

  • Ting, Chu-Chi;Cheng, Hao-Ping;Hsieh, Yu-Heng;Sun, Oliver;Chen, San-Yuan;Lin, Chin-Ching;Kuo, Kuan-Ting;Lee, Shu-Ping
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1534-1535
    • /
    • 2005
  • Highly luminescent efficiency phosphors have been successfully produced by surface modification and microwave irradiation treatment. The SEM image and XRD analysis reveal that the surface morphology of the white-light phosphors can be notably modified by microwave irradiation and exhibit with better crystalline property. The VUV PL spectra show that the microwave irradiation treatment can effectively enhance the luminescent efficiency by a factor of 1.5 times for intensity compared to that without microwave treatment. A further improvement in all visible emission can be made by modifying surface composition through MgO coating on the phosphor powder. These results demonstrate that such a simple approach can provide for improving luminescent efficiency of phosphors for the optoelectronic devices.

  • PDF

Emission Properties of Electrodeless Sulfur Lamp by Additives (화합물 첨가에 따른 무전극 황램프의 발광특성)

  • Lee, Jong-Chan;Kim, Kwang-Soo;Park, Dae-Hee;Hwang, Myung-Keun;Park, Cheol-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1890-1892
    • /
    • 2002
  • The technology of sulfur lamps that has physical and electrical characteristics comparable to current HID source has been reported. The fundamental principles of the operation of microwave discharges that are used to convert microwave energy to broad spectrum visual light are known. In this paper, emission dependance of microwave discharges in mixture content of sulfur with noble gases was studied. It is shown that the excitation of this gaseous mixture is carried out in two phases: (l) ionization of noble gas atoms by a microwave field and (2) the consequent maintenance of slightly ionized nonequilibrium plasma by the field. These two processes have essentially various thresholds for the microwave pump. The purpose of this work is to investigate spectral properties of the high frequency discharges in a mixture sulfur vapors with noble gases.

  • PDF

A Diamond-like Film Formation from (CH$_4$ + H$_2$) Gas Mixture with the LPCVD Apparatus (LPCVD 장치를 이용한 메탄과 수소 혼합기체로부터 다이아몬드 박막의 제조)

  • Kim Sang Kyun;Choy Jin-Ho;Choo Kwng Yul
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.396-403
    • /
    • 1990
  • We describe how to design and construct a LPCVD (Low Pressure Chemical Vapor Deposition) apparatus which can be applicable to the study of reaction mechanism in general CVD experiments. With this apparatus we have attempted to make diamond like carbon films on the p-type (111) Si wafer from (H$_2$ + CH$_4$) gas mixtures. Two different methods have been tried to get products. (1)The experiment was carried out in the reactor with two different inlet gas tubes. One coated with phosphoric acid was used for supplying microwave discharged hydrogen gas stream, and methane has been passed through the other tube without the microwave discharge. In this method we got only amorphous carbon cluster products. (2) The gas mixture (H$_2$ + CH$_4$) has been passed through the discharge tube with the Si wafer located in and/or near the microwave plasma. In this case diamond-like carbon products could be obtained.

  • PDF

Application of cold atmospheric microwave plasma as an adjunct therapy for wound healing in dogs and cats

  • Jisu Yoo;Yeong-Hun Kang;Seung Joon Baek;Cheol-Yong Hwang
    • Journal of Veterinary Science
    • /
    • v.24 no.4
    • /
    • pp.56.1-56.13
    • /
    • 2023
  • Background: Cold atmospheric plasma is a novel innovative approach for wound care, and it is currently underrepresented in veterinary medicine. Objectives: To investigate the efficacy and safety of using cold atmospheric microwave plasma (CAMP) as an adjunct therapy for wound healing in dogs and cats. Methods: Wound healing outcomes were retrospectively analyzed using clinical records of client-owned dogs and cats who were first managed through standard wound care alone (pre-CAMP period) and subsequently via CAMP therapy (CAMP period). The degree of wound healing was estimated based on wound size and a modified wound scoring system. Results: Of the 27 acute and chronic wounds included in the analysis, 81.48% showed complete healing after the administration of CAMP as an adjunct therapy to standard care. Most wounds achieved complete healing in < 5 weeks. Compared with the pre-CAMP period, the rate of wound healing significantly increased every week in the CAMP period in terms of in wound size (first week, p < 0.001; second week, p = 0.012; third week, p < 0.001) and wound score (first week, p < 0.001; second week, p < 0.001; third week, p = 0.001). No adverse events were noted except for mild discomfort and transient erythema. Conclusions: CAMP is a well-tolerated therapeutic option with immense potential to support the treatment of wounds of diverse etiology in small animal practice. Further research is warranted to establish specific criteria for CAMP treatment according to wound characteristics.

Josephson plasma excitation in vortex states

  • Kadowaki, K.
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.21-21
    • /
    • 2000
  • The Josephson Plasma resonance in single crystalling Bi2Sr2CaCu2O8 has been investigated at a microwave frequency of 35 GHz in a cavity resonator. A sharp resonance is observed in a perpendicular oscillating magnetic field. The former is independent of the sample dimension, shile the latter shift to higher field as the sample size L is reduced, and it disappears when L becomes smaller than the critical length. The longitudinal plasma mode is a Nambu-Goldston mode in a superconductor, the experimental distinction between the longitudinal and the transverse mode leads to the conclusion that the existence of the Nambu-Goldston mod as predicted by Anderson was experimentally confirmed by direct observation of the Josephson plasma resonance with longitudinal excitations. The finite gap found in Josephson plasma resonance also provides a direct proof of the Anderson-Higgs mechanism within the context of the spontaneously broken phase symmetry of the Gauge-field theory in a superconductor.

  • PDF