Browse > Article
http://dx.doi.org/10.5695/JKISE.2011.44.4.131

A Kinetic Study on the Growth of Nanocrystalline Diamond Particles to Thin Film on Silicon Substrate  

Jung, Doo-Young (Department of Advanced Materials Engineering, Korea Polytechnic University)
Kang, Chan-Hyoung (Department of Advanced Materials Engineering, Korea Polytechnic University)
Publication Information
Journal of the Korean institute of surface engineering / v.44, no.4, 2011 , pp. 131-136 More about this Journal
Abstract
A kinetic study has been made for the growth of nanocrystalline diamond (NCD) particles to a continuous thin film on silicon substrate in a microwave plasma chemical vapor deposition reactor. Parameters of deposition have been microwave power of 1.2 kW, the chamber pressure of 110 Torr, and the Ar/$CH_4$ ratio of 200/2 sccm. The deposition has been carried out at temperatures in the range of $400\sim700^{\circ}C$ for the times of 0.5~16 h. It has been revealed that a continuous diamond film evolves from the growth and coalescence of diamond crystallites (or particles), which have been heterogeneously nucleated at the previously scratched sites. The diamond particles grow following an $h^2$ = k't relationship, where h is the height of particles, k' is the particle growth rate constant, and t is the deposition time. The k' values at the different deposition temperatures satisfy an Arrhenius equation with the apparent activation energy of 4.37 kcal/mol or 0.19 eV/ atom. The rate limiting step should be the diffusion of carbon species over the Si substrate surface. The growth of diamond film thickness (H) shows an H = kt relationship with deposition time, t. The film growth rate constant, k, values at the different deposition temperatures show another Arrhenius-type expression with the apparent activation energy of 3.89 kcal/mol or 0.17 eV/atom. In this case, the rate limiting step might be the incorporation reaction of carbon species from the plasma on the film surface.
Keywords
Nanocrystalline diamond film; Microwave plasma CVD; Nucleation and growth; Arrhenius equation; Activation energy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. C. Barbosa, F. A. Almeida, R. F. Silva, N. G. Ferreira, V. J. Trava-Airoldi, E. J. Corat, Diamond Relat. Mater. 18 (2009) 1283.   DOI
2 P. C. Redfern, D. A. Horner, L. A. Curtiss, D. M. Gruen, J. Phys. Chem. 100 (1996) 11654.   DOI
3 M. Sternberg, P. Zapol, L. A. Curtiss, Phys. Rev. B 69 (2003) 205330.
4 T. S. Yang, J. Y. Lai, C. L. Cheng, M. S. Wong, Diamond Relat. Mater. 10 (2001) 2162.
5 A. Stacey, I. Aharonovich, S. Prawer, J. E. Butler, Diamond Relat. Mater. 18 (2009) 51.   DOI
6 J. Burke, The Kinetics of Phase Transformations in Metals, Pergamon Press, Oxford, (1965) 98.
7 J. A. Venables, G. D. T. Spiller, M. Hanbcken, Rep. Prog. Phys. 47 (1984) 399.   DOI
8 A. R. Kim, H. J. Park, K. H. Jeong, J. G. Lee, H. S. Nam, E. G. Lee, C. H. Kang, Thin Solid Films, 517 (2009) 3827.   DOI
9 D. M. Gruen, Annu. Rev. Mater. Sci. 29 (1999) 211.   DOI
10 J. Philip, P. Hess, T. Feygelson, J. E. Buttler, S. Chattopadhyay, K. H. Chen, L. C. Chen, J. Appl. Phys. 93 (2003) 2164.   DOI
11 D. Y. Jung, C. H. Kang, J. Kor. Inst. Surf. Eng. 42 (2009) 216.   DOI
12 K. O. Schweitz, R. B. Schou-Jensen, S. S. Eskildsen, Diamond Relat. Mater. 5 (1996) 206.   DOI
13 S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036.   DOI
14 E. Kondoh, T. Ohta, T. Mitomo, K, Ohtsuka, J. Appl. Phys. 73 (1993) 3041.   DOI
15 T. G. McCauley, D. M. Gruen, A. R. Krauss, Appl. Phys. Lett. 73 (1998) 1646.   DOI
16 X. Xiao, J. Birrel, J. E. Gerbi, O. Auciello, J. A. Carlisle, J. Appl. Phys. 96 (2004) 2232.   DOI
17 W. Kulisch, C. Popov, S. Boycheva, M. Jelinek, P. N. Gibson, V. Vorlicek, Surf. Coat. Technol. 200 (2006) 4731.   DOI