DOI QR코드

DOI QR Code

A Kinetic Study on the Growth of Nanocrystalline Diamond Particles to Thin Film on Silicon Substrate

  • Jung, Doo-Young (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kang, Chan-Hyoung (Department of Advanced Materials Engineering, Korea Polytechnic University)
  • Received : 2011.07.15
  • Accepted : 2011.08.30
  • Published : 2011.08.31

Abstract

A kinetic study has been made for the growth of nanocrystalline diamond (NCD) particles to a continuous thin film on silicon substrate in a microwave plasma chemical vapor deposition reactor. Parameters of deposition have been microwave power of 1.2 kW, the chamber pressure of 110 Torr, and the Ar/$CH_4$ ratio of 200/2 sccm. The deposition has been carried out at temperatures in the range of $400\sim700^{\circ}C$ for the times of 0.5~16 h. It has been revealed that a continuous diamond film evolves from the growth and coalescence of diamond crystallites (or particles), which have been heterogeneously nucleated at the previously scratched sites. The diamond particles grow following an $h^2$ = k't relationship, where h is the height of particles, k' is the particle growth rate constant, and t is the deposition time. The k' values at the different deposition temperatures satisfy an Arrhenius equation with the apparent activation energy of 4.37 kcal/mol or 0.19 eV/ atom. The rate limiting step should be the diffusion of carbon species over the Si substrate surface. The growth of diamond film thickness (H) shows an H = kt relationship with deposition time, t. The film growth rate constant, k, values at the different deposition temperatures show another Arrhenius-type expression with the apparent activation energy of 3.89 kcal/mol or 0.17 eV/atom. In this case, the rate limiting step might be the incorporation reaction of carbon species from the plasma on the film surface.

Keywords

References

  1. D. M. Gruen, Annu. Rev. Mater. Sci. 29 (1999) 211. https://doi.org/10.1146/annurev.matsci.29.1.211
  2. J. Philip, P. Hess, T. Feygelson, J. E. Buttler, S. Chattopadhyay, K. H. Chen, L. C. Chen, J. Appl. Phys. 93 (2003) 2164. https://doi.org/10.1063/1.1537465
  3. D. Y. Jung, C. H. Kang, J. Kor. Inst. Surf. Eng. 42 (2009) 216. https://doi.org/10.5695/JKISE.2009.42.5.216
  4. K. O. Schweitz, R. B. Schou-Jensen, S. S. Eskildsen, Diamond Relat. Mater. 5 (1996) 206. https://doi.org/10.1016/0925-9635(95)00499-8
  5. S. Yugo, T. Kanai, T. Kimura, T. Muto, Appl. Phys. Lett. 58 (1991) 1036. https://doi.org/10.1063/1.104415
  6. E. Kondoh, T. Ohta, T. Mitomo, K, Ohtsuka, J. Appl. Phys. 73 (1993) 3041. https://doi.org/10.1063/1.353011
  7. T. G. McCauley, D. M. Gruen, A. R. Krauss, Appl. Phys. Lett. 73 (1998) 1646. https://doi.org/10.1063/1.122233
  8. X. Xiao, J. Birrel, J. E. Gerbi, O. Auciello, J. A. Carlisle, J. Appl. Phys. 96 (2004) 2232. https://doi.org/10.1063/1.1769609
  9. W. Kulisch, C. Popov, S. Boycheva, M. Jelinek, P. N. Gibson, V. Vorlicek, Surf. Coat. Technol. 200 (2006) 4731. https://doi.org/10.1016/j.surfcoat.2005.04.007
  10. D. C. Barbosa, F. A. Almeida, R. F. Silva, N. G. Ferreira, V. J. Trava-Airoldi, E. J. Corat, Diamond Relat. Mater. 18 (2009) 1283. https://doi.org/10.1016/j.diamond.2009.05.002
  11. P. C. Redfern, D. A. Horner, L. A. Curtiss, D. M. Gruen, J. Phys. Chem. 100 (1996) 11654. https://doi.org/10.1021/jp953165g
  12. M. Sternberg, P. Zapol, L. A. Curtiss, Phys. Rev. B 69 (2003) 205330.
  13. T. S. Yang, J. Y. Lai, C. L. Cheng, M. S. Wong, Diamond Relat. Mater. 10 (2001) 2162.
  14. A. Stacey, I. Aharonovich, S. Prawer, J. E. Butler, Diamond Relat. Mater. 18 (2009) 51. https://doi.org/10.1016/j.diamond.2008.09.020
  15. J. Burke, The Kinetics of Phase Transformations in Metals, Pergamon Press, Oxford, (1965) 98.
  16. J. A. Venables, G. D. T. Spiller, M. Hanbcken, Rep. Prog. Phys. 47 (1984) 399. https://doi.org/10.1088/0034-4885/47/4/002
  17. A. R. Kim, H. J. Park, K. H. Jeong, J. G. Lee, H. S. Nam, E. G. Lee, C. H. Kang, Thin Solid Films, 517 (2009) 3827. https://doi.org/10.1016/j.tsf.2009.01.116

Cited by

  1. Nanocrystalline Diamond Coating on Steel with SiC Interlayer vol.47, pp.2, 2014, https://doi.org/10.5695/JKISE.2014.47.2.075
  2. Growth of Nanocrystalline Diamond on W and Ti Films vol.46, pp.4, 2013, https://doi.org/10.5695/JKISE.2013.46.4.145
  3. Nanocrystalline Diamond Coated SiC Balls in Tribometer vol.47, pp.5, 2014, https://doi.org/10.5695/JKISE.2014.47.5.263
  4. Heat Spreading Properties of CVD Diamond Coated Al Heat Sink vol.48, pp.6, 2015, https://doi.org/10.5695/JKISE.2015.48.6.297
  5. Effect of Metal Interlayers on Nanocrystalline Diamond Coating over WC-Co Substrate vol.46, pp.2, 2013, https://doi.org/10.5695/JKISE.2013.46.2.068
  6. Effect of DC Bias on the Growth of Nanocrystalline Diamond Films by Microwave Plasma CVD vol.46, pp.1, 2013, https://doi.org/10.5695/JKISE.2013.46.1.029