• 제목/요약/키워드: Microtomography

검색결과 55건 처리시간 0.025초

Microscale Analysis of the Anisotropic Sintering of Metal Powder Compacts

  • Vagnon, Alexandre;Kapelski, Georges;Bouvard, Didier.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.260-261
    • /
    • 2006
  • The behaviour of steel powder compacts during sintering has been investigated by dilatometry and X-ray computed microtomography. Dilatometry measurements showed that the anisotropic deformation results from various phenomena arising at different moments of the cycle including the delubrication stage. Microtomography provided 3D images of the microstructure induced by prior die pressing and its changes throughout sintering. Finally a schematic description of the main phenomena responsible for the deformation of metal powder compacts during sintering is proposed.

  • PDF

Identification of ginseng root using quantitative X-ray microtomography

  • Ye, Linlin;Xue, Yanling;Wang, Yudan;Qi, Juncheng;Xiao, Tiqiao
    • Journal of Ginseng Research
    • /
    • 제41권3호
    • /
    • pp.290-297
    • /
    • 2017
  • Background: The use of X-ray phase-contrast microtomography for the investigation of Chinese medicinal materials is advantageous for its nondestructive, in situ, and three-dimensional quantitative imaging properties. Methods: The X-ray phase-contrast microtomography quantitative imaging method was used to investigate the microstructure of ginseng, and the phase-retrieval method is also employed to process the experimental data. Four different ginseng samples were collected and investigated; these were classified according to their species, production area, and sample growth pattern. Results: The quantitative internal characteristic microstructures of ginseng were extracted successfully. The size and position distributions of the calcium oxalate cluster crystals (COCCs), important secondary metabolites that accumulate in ginseng, are revealed by the three-dimensional quantitative imaging method. The volume and amount of the COCCs in different species of the ginseng are obtained by a quantitative analysis of the three-dimensional microstructures, which shows obvious difference among the four species of ginseng. Conclusion: This study is the first to provide evidence of the distribution characteristics of COCCs to identify four types of ginseng, with regard to species authentication and age identification, by X-ray phase-contrast microtomography quantitative imaging. This method is also expected to reveal important relationships between COCCs and the occurrence of the effective medicinal components of ginseng.

X-ray microtomography를 이용한 치아의 3차원 재구성 (THREE DIMENSIONAL RECONSTRUCTION OF TEETH USING X-RAY MICROTOMOGRAPHY)

  • 신동훈
    • Restorative Dentistry and Endodontics
    • /
    • 제28권6호
    • /
    • pp.485-490
    • /
    • 2003
  • Complete understanding of the exterior and interior structure of the tooth would be prerequisite to the successful clinical results, especially in the restorative and endodontic treatment. Although three-dimensional reconstruction method using x-ray microtomography could not be used in clinical cases, it may be the best way to reconstruct the morphologic characteristics of the tooth structure in detail without destructing the tooth itself. This study was done to three dimensionally reconstruct every teeth in the arch in order to increase the understanding about the endodontic treatment and to promote the effective restorative treatment by upgrading the knowledge of the tooth morphology. After placing tooth between the microfocus x-ray tube and the image intensifier to obtain two-dimensional images of each level. scanning was done under the condition of 80 keV, $100{\;}\mu\textrm{m}$, 16.8 magnification with the spot size of $8{\;}\mu\textrm{m}$. Cross-section pixel size of $16.28{\;}\mu\textrm{m}$ and 48.83 cross-section to cross-section distance were also used. From the results of this study, precise three dimensional reconstructed images of every teeth could be obtained. Furthermore, it was possible to see image that showed interested area only, for example. enamel portion only, pulp and dentin area without enamel structure, pulp only, combination image of enamel and pulp, etc. It was also possible to see transparent image without some part of tooth structure. This image might be used as a guide when restoring and preparing the full and partial crown by showing the positional and morphological relationship between the pulp and the outer tooth structure. Another profit may be related with the fact that it would promote the understanding of the interior structure by making observation of the auto-rotating image of AVI file from the various direction possible.

Wood Identification of Historical Architecture in Korea by Synchrotron X-ray Microtomography-Based Three-Dimensional Microstructural Imaging

  • HWANG, Sung-Wook;TAZURU, Suyako;SUGIYAMA, Junji
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권3호
    • /
    • pp.283-290
    • /
    • 2020
  • For visual inspection-based wood identification, optical microscopy techniques typically require a relatively large sample size, and a scanning electron microscope requires a clean surface. These novel techniques experience limitations for objects with highly limited sampling capabilities such as important and registered wooden cultural properties. Synchrotron X-ray microtomography (SR-µCT) has been suggested as an effective alternative to avoid such limitations and various other imaging issues. In this study, four pieces of wood fragments from wooden members used in the Manseru pavilion of Bongjeongsa temple in Andong, Korea, wereused for identification. Three-dimensional microstructural images were reconstructed from these small wood samples using SR-µCT at SPring-8. From the analysis of the reconstructed images, the samples were identified as Zelkova serrata, Quercus sect. Cerris, and Pinus koraiensis. The images displayed sufficient spatial resolution to clearly observe the anatomical features of each species. In addition, the three-dimensional imaging allowed unlimited image processing.

Nondestructive Evaluation of Microstructure of SiCf/SiC Composites by X-Ray Computed Microtomography

  • Kim, Weon-Ju;Kim, Daejong;Jung, Choong Hwan;Park, Ji Yeon;Snead, Lance L.
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.378-383
    • /
    • 2013
  • Continuous fiber-reinforced ceramic matrix composites (CFCCs) have a complex distribution of porosity, consisting of interfiber micro pores and interbundle/interply macro pores. Owing to the complex geometry of the pores and fiber architecture, it is difficult to obtain representative microstructural features throughout the specimen volume with conventional, destructive ceramographic approaches. In this study, we introduce X-ray computed microtomography (X-ray ${\mu}CT$) to nondestructively analyze the microstructures of disk shaped and tubular $SiC_f$/SiC composites fabricated by the chemical vapor infiltration (CVI) method. The disk specimen made by stacking plain-woven SiC fabrics exhibited periodic, large fluctuation of porosity in the stacking direction but much less variation of porosity perpendicular to the fabric planes. The X-ray ${\mu}CT$ evaluation of the microstructure was also effectively utilized to improve the fabrication process of the triple-layered tubular SiC composite.

원추형 빔 마이크로 단층촬영기술 및 그 응용 (Cone-Beam Microtomography and Its Application)

  • 김호경
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.7-14
    • /
    • 2005
  • 본 논고에서는 microfocus X 선 발생장치와 평판형 영상센서를 이용한 micro-CT 시스템의 개발과 그 응용에 대해 소개하였다. 개발과 관련하여서는 영상센서 및 시스템의 동작원리뿐만 아니라 성능평가 결과에 대해서도 간단히 언급하였는데, 이와 같은 성능평가는 추후 개선된 혹은 새로운 설계 및 제작을 위해서는 필수적으로 수반되어야 할 부분이다. 개발된 micro-CT 시스템의 응용분야 소개와 관련하여서는 몇 가지 획득 영상을 토대로 바이오 영상과 산업용 영상에 관하여 언급하였다. 바이오 영상분야에서는 현재 세계적으로 유수 의료기기업체에서 이미 제작하여 판매하고 있으며, 대부분 X선 영상증배관 혹은 CCD(charge-coupled device)를 X 선 영상획득 센서로 사용한 반면, 본 논고에서 소개한 시스템은 평판형 영상센서를 사용했다는 점에서 차별성이 있다. Micro-CT 시스템의 산업용 영상분야로의 적용은 이제 시작 단계이며, 기존 라미노그라피 시스템을 대체하거나 혹은 새로운 응용으로 자리매김할 것으로 기대된다.

Effects of poly (ethylene glycol-propylene glycol) copolymer on hemostasis and osteogenesis in a rat calvarial defect model

  • Kim, Ha-Eun;Yoon, Hun-Young;Kim, Eun-Jin;Kim, Sun-Jong
    • 대한수의학회지
    • /
    • 제60권3호
    • /
    • pp.145-153
    • /
    • 2020
  • This study aimed to evaluate the effects of a bioabsorbable bone hemostatic agent comprising poly (ethylene glycol-propylene glycol) copolymers (PEG-PPG) on hemostasis and osteogenesis. Bilateral 3 mm diameter calvarial defects were created in 99 male Sprague-Dawley rats. The defects were filled with PEG-PPG or bone wax. The defects of control group were left unfilled. Virtual autopsy was performed to evaluate bioabsorption. The calvaria were subjected to x-ray microtomography (microCT) and histological examination. Bone volume fraction (BV/TV) and bone mineral density (BMD) were measured using microCT; furthermore, white blood cell count and histological examination were performed. After application of PEG-PPG and bone wax, immediate hemostasis was achieved. Autopsy revealed that PEG-PPG disappeared within 48 h at the application site; in contrast, bone wax remained until 12 weeks. The PEG-PPG and control groups showed significantly more osteogenesis than the bone wax group with respect to BV/TV and BMD at 3, 6, and 12 weeks (p < 0.05). Histology revealed that the bone wax group exhibited little bone formation with inflammation. In contrast, PEG-PPG and control groups showed significantly more qualitative osteogenesis than the bone wax group (p < 0.01). In conclusion, PEG-PPG showed immediate hemostasis and was absorbed to allow progressive osteogenesis.

New Characterization Methods for Block Copolymers and their Phase Behaviors

  • Park, Hae-Woong;Jung, Ju-Eun;Chang, Tai-Hyun
    • Macromolecular Research
    • /
    • 제17권6호
    • /
    • pp.365-377
    • /
    • 2009
  • In this feature article, we briefly review the new methods we have utilized recently in the investigation of morphology and phase behavior of block copolymers. We first describe the chromatographic fractionation method to purify block copolymers from their side products of mainly homopolymers or block copolymer precursors inadvertently terminated upon addition of the next monomer in the sequential anionic polymerization. The chromatographic method is extended to the fractionation of the individual block of diblock copolymers which can yield the diblock copolymer fractions of different composition and molecular weight, which also have narrower distributions in both molecular weight and composition. A more detailed phase diagram could be constructed from the set of block copolymer fractions without the need of acquiring many block copolymers each prepared by anionic polymerization. The fractions with narrow distribution in both molecular weight and composition exhibit better long-range ordering and sharper phase transition. Next, epitaxial relationships between two ordered structures in block copolymer thin film is discussed. We employed the direct visualization method, transmission electron microtomography(TEMT) to scrutinize the grain boundary structure.