New Characterization Methods for Block Copolymers and their Phase Behaviors

  • Park, Hae-Woong (Department of Chemistry and Graduate Institute of Advanced Materials Science, Pohang University of Science and Technology) ;
  • Jung, Ju-Eun (Department of Chemistry and Graduate Institute of Advanced Materials Science, Pohang University of Science and Technology) ;
  • Chang, Tai-Hyun (Department of Chemistry and Graduate Institute of Advanced Materials Science, Pohang University of Science and Technology)
  • Published : 2009.06.25

Abstract

In this feature article, we briefly review the new methods we have utilized recently in the investigation of morphology and phase behavior of block copolymers. We first describe the chromatographic fractionation method to purify block copolymers from their side products of mainly homopolymers or block copolymer precursors inadvertently terminated upon addition of the next monomer in the sequential anionic polymerization. The chromatographic method is extended to the fractionation of the individual block of diblock copolymers which can yield the diblock copolymer fractions of different composition and molecular weight, which also have narrower distributions in both molecular weight and composition. A more detailed phase diagram could be constructed from the set of block copolymer fractions without the need of acquiring many block copolymers each prepared by anionic polymerization. The fractions with narrow distribution in both molecular weight and composition exhibit better long-range ordering and sharper phase transition. Next, epitaxial relationships between two ordered structures in block copolymer thin film is discussed. We employed the direct visualization method, transmission electron microtomography(TEMT) to scrutinize the grain boundary structure.

Keywords

References

  1. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D.H. Adamson, Science, 276, 1401 (1997) https://doi.org/10.1126/science.276.5317.1401
  2. I. W. Hamley, The Physics of Block Copolymers, Oxford Univ. Press, New York, 1998
  3. T. Thurn-Albrecht, J. Schotter, C. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, and T. P. Russell, Science, 290, 2126 (2000) https://doi.org/10.1126/science.290.5499.2126
  4. A. Urbas, R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou, and L. J. Fetters, Adv. Mater., 12, 812 (2000) https://doi.org/10.1002/(SICI)1521-4095(200006)12:11<812::AID-ADMA812>3.0.CO;2-8
  5. C. T. Black, K. W. Guarini, K. R. Milkove, S. M. Baker, T. P. Russell, and M. T. Tuominen, Appl. Phys. Lett., 79, 409 (2001) https://doi.org/10.1063/1.1383805
  6. J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lammertink, and G. J. Vancso, Adv. Mater., 13, 1174 (2001) https://doi.org/10.1002/1521-4095(200108)13:15<1174::AID-ADMA1174>3.0.CO;2-Q
  7. H. C. Kim, X. Q. Jia, C. M. Stafford, D. H. Kim, T. J. McCarthy, M. Tuominen, C. J. Hawker, and T. P. Russell, Adv. Mater.,13, 795 (2001) https://doi.org/10.1002/1521-4095(200106)13:11<795::AID-ADMA795>3.0.CO;2-1
  8. W. Lee, D. Y. Cho, T. Y. Chang, K. J. Hanley, and T. P. Lodge, Macromolecules, 34, 2353 (2001) https://doi.org/10.1021/ma001727a
  9. S. Park, D. Cho, K. Im, T. Chang, D. Uhrig, and J. W. Mays, Macromolecules, 36, 5834 (2003) https://doi.org/10.1021/ma034603h
  10. S. Park, I. Park, T. Chang, and C. Y. Ryu, J. Am. Chem. Soc.,126, 8906 (2004) https://doi.org/10.1021/ja047385w
  11. B. H. Chung, S. Park, and T. Y. Chang, Macromolecules, 38, 6122 (2005) https://doi.org/10.1021/ma050751r
  12. B. Lee, I. Park, J. Yoon, S. Park, J. Kim, K. W. Kim, T. Chang, and M. Ree, Macromolecules, 38, 4311 (2005) https://doi.org/10.1021/ma047562d
  13. I. Park, B. Lee, J. Ryu, K. Im, J. Yoon, M. Ree, and T. Chang, Macromolecules, 38, 10532 (2005) https://doi.org/10.1021/ma051137i
  14. C. Y. Choi, M. K. Jang, and J. W. Nah, Macromol. Res., 15, 623 (2007) https://doi.org/10.1007/BF03218942
  15. K. Dayananda, M. S. Kim, B. S. Kim, and D. S. Lee, Macromol. Res., 15, 385 (2007) https://doi.org/10.1007/BF03218803
  16. S. J. Hwang, M. S. Kim, J. K. Han, D. S. Lee, B. S. Kim, E. K. Choi, H. J. Park, and A. S. Kim, Macromol. Res., 15, 437 (2007) https://doi.org/10.1007/BF03218811
  17. K. Im, H.-W. Park, Y. Kim, B. Chung, M. Ree, and T. Chang, Anal. Chem., 79, 1067 (2007) https://doi.org/10.1021/ac061738n
  18. G. P. Kim, Y. S. Jung, S. B. Yoon, D. W. Kim, and S. H. Baeck, Macromol. Res., 15, 693 (2007) https://doi.org/10.1007/BF03218952
  19. S. Y. Kim, S. H. Cho, Y. M. Lee, and L. Y. Chu, Macromol.Res., 15, 646 (2007) https://doi.org/10.1007/BF03218945
  20. H. S. Lee, A. Roy, A. S. Badami, and J. E. McGrath, Macromol. Res., 15, 160 (2007) https://doi.org/10.1007/BF03218768
  21. Y. K. Lee, S. M. Hong, J. S. Kim, J. H. Im, H. S. Min, E. Subramanyam, and K. M. Huh, Macromol. Res., 15, 330 (2007) https://doi.org/10.1007/BF03218795
  22. Y. J. Jun, K. M. Park, Y. K. Joung, K. D. Park, and S. J. Lee, Macromol. Res., 16, 704 (2008) https://doi.org/10.1007/BF03218584
  23. B. J. Kim, D. K. Oh, and A. Y. Chang, Macromol. Res., 16, 103 (2008) https://doi.org/10.1007/BF03218837
  24. J. K. Kim, J. I. Lee, and D. H. Lee, Macromol. Res., 16, 267 (2008) https://doi.org/10.1007/BF03218519
  25. D. H. Lee, Y. S. Kang, J. H. Kim, and S. W. Kang, Macromol. Res., 16, 676 (2008) https://doi.org/10.1007/BF03218580
  26. D. K. Lee, J. T. Park, J. K. Choi, D. K. Roh, J. H. Lee, Y. G. Shul, and J. H. Kim, Macromol. Res., 16, 549 (2008) https://doi.org/10.1007/BF03218558
  27. Y. Min, S. Lee, J. K. Park, K. Y. Cho, and S. J. Sung, Macromol. Res., 16, 231 (2008) https://doi.org/10.1007/BF03218858
  28. S. Park, D. Y. Ryu, J. K. Kim, M. Ree, and T. Chang, Polymer, 49, 2170 (2008) https://doi.org/10.1016/j.polymer.2008.03.009
  29. H.-W. Park, J. Jung, T. Chang, K. Matsunaga, and H. Jinnai, J. Am. Chem. Soc., 131, 46 (2009) https://doi.org/10.1021/ja808259m
  30. F. S. Bates, Science, 251, 898 (1991) https://doi.org/10.1126/science.251.4996.898
  31. F. S. Bates, M. F. Schulz, A. K. Khandpur, S. Foerster, J. H. Rosedale, K. Almdal, and K. Mortensen, Faraday Discuss.,98, 7 (1994) https://doi.org/10.1039/fd9949800007
  32. C. X. Li, G. H. Li, H. C. Moon, D. H. Lee, J. K. Kim, and J. H. Cho, Macromol. Res., 15, 656 (2007) https://doi.org/10.1007/BF03218946
  33. C. Park, M. Rhue, M. Im, and C. Kim, Macromol. Res., 15, 688 (2007) https://doi.org/10.1007/BF03218951
  34. C. Park, M. Rhue, J. Lim, and C. Kim, Macromol. Res., 15, 39 (2007) https://doi.org/10.1007/BF03218750
  35. J. Bang and T. P. Lodge, Macromol. Res., 16, 51 (2008) https://doi.org/10.1007/BF03218960
  36. D. H. Kim, Y. S. Ko, and Y. K. Kwon, Macromol. Res., 16, 62 (2008) https://doi.org/10.1007/BF03218962
  37. S. Forster and M. Antonietti, Adv. Mater., 10, 195 (1998) https://doi.org/10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V
  38. A. K. Khandpur, S. Foerster, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, and K. Mortensen, Macromolecules, 28, 8796 (1995) https://doi.org/10.1021/ma00130a012
  39. L. Leibler, Marcromolecules, 13, 1602 (1980) https://doi.org/10.1021/ma60078a047
  40. M. W. Matsen and F. S. Bates, Macromolecules, 29, 1091(1996) https://doi.org/10.1021/ma951138i
  41. K. Almdal, J. H. Rosedale, F. S. Bates, G. D. Wignall, and G. H. Fredrickson, Phys. Rev. Lett., 65, 1112 (1990) https://doi.org/10.1103/PhysRevLett.65.1112
  42. K. A. Koppi, M. Tirrell, and F. S. Bates, Phys. Rev. Lett., 70,1449 (1993) https://doi.org/10.1103/PhysRevLett.70.1449
  43. I. W. Hamley, K. A. Koppi, J. H. Rosedale, F. S. Bates, K. Almdal, and K. Mortensen, Macromolecules, 26, 5959 (1993) https://doi.org/10.1021/ma00074a018
  44. S. Foerster, A. K. Khandpur, J. Zhao, F. S. Bates, I. W. Hamley, A. J. Ryan, and W. Bras, Macromolecules, 27, 6922 (1994) https://doi.org/10.1021/ma00101a033
  45. D. A. Hajduk, P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, and L. J. Fetters, Macromolecules, 27, 4063 (1994) https://doi.org/10.1021/ma00093a006
  46. S. Sakurai, H. Kawada, T. Hashimoto, and L. J. Fetters, Macromolecules, 26, 5796 (1993) https://doi.org/10.1021/ma00073a038
  47. D. A. Hajduk, S. M. Gruner, P. Rangarajan, R. A. Register, L. J. Fetters, C. Honeker, R. J. Albalak, and E. L. Thomas, Macromolecules, 27, 490 (1994) https://doi.org/10.1021/ma00080a024
  48. K. A. Koppi, M. Tirrell, F. S. Bates, K. Almdal, and K. Mortensen, J. Rheol., 38, 999 (1994) https://doi.org/10.1122/1.550600
  49. M. F. Schulz, F. S. Bates, K. Almdal, and K. Mortensen, Phys. Rev. Lett., 73, 86 (1994) https://doi.org/10.1103/PhysRevLett.73.86
  50. J. Zhao, B. Majumdar, M. F. Schulz, F. S. Bates, K. Almdal, K. Mortensen, D. A. Hajduk, and S. M. Gruner, Macromolecules, 29, 1204 (1996) https://doi.org/10.1021/ma9507251
  51. M. Laradji, A. C. Shi, J. Noolandi, and R. C. Desai, Macromolecules, 30, 3242 (1997) https://doi.org/10.1021/ma9618437
  52. N. Sakamoto, T. Hashimoto, C. D. Han, D. Kim, and N. Y. Vaidya, Macromolecules, 30, 1621 (1997) https://doi.org/10.1021/ma960610c
  53. M. W. Matsen, Phys. Rev. Lett., 80, 4470 (1998) https://doi.org/10.1103/PhysRevLett.80.4470
  54. M. E. Vigild, K. Almdal, K. Mortensen, I. W. Hamley, J. P. A. Fairclough, and A. J. Ryan, Macromolecules, 31, 5702(1998) https://doi.org/10.1021/ma9716746
  55. G. Floudas, R. Ulrich, and U. Wiesner, J. Chem. Phys., 110, 652 (1999)
  56. I. W. Hamley, J. P. A. Fairclough, A. J. Ryan, S. M. Mai, and C. Booth, Phys. Chem. Chem. Phys., 1, 2097 (1999) https://doi.org/10.1039/a901211g
  57. C. Y. Ryu and T. P. Lodge, Macromolecules, 32, 7190 (1999) https://doi.org/10.1021/ma990914+
  58. K. Kimishima, T. Koga, and T. Hashimoto, Macromolecules, 33, 968 (2000) https://doi.org/10.1021/ma991470k
  59. R. Krishnamoorti, A. S. Silva, M. A. Modi, and B. Hammouda, Macromolecules, 33, 3803 (2000) https://doi.org/10.1021/ma991842p
  60. M. W. Matsen, J. Chem. Phys., 114, 8165 (2001)
  61. H. H. Lee, W. Y. Jeong, J. K. Kim, K. J. Ihn, J. A. Kornfield, Z. G. Wang, and S. Y. Qi, Macromolecules, 35, 785 (2002) https://doi.org/10.1021/ma010951c
  62. C. Y. Wang and T. P. Lodge, Macromolecules, 35, 6997 (2002) https://doi.org/10.1021/ma0205212
  63. J. H. Ahn and W. C. Zin, Macromol. Res., 11, 152 (2003) https://doi.org/10.1007/BF03218345
  64. S. Park, K. Kwon, D. Cho, B. Lee, M. Ree, and T. Chang, Macromolecules, 36, 4662 (2003) https://doi.org/10.1021/ma030086r
  65. L. Zhu, P. Huang, W. Y. Chen, X. Weng, S. Z. D. Cheng, Q. Ge, R. P. Quirk, T. Senador, M. T. Shaw, E. L. Thomas, B. Lotz, B. S. Hsiao, F. J. Yeh, and L. Z. Liu, Macromolecules, 36, 3180 (2003) https://doi.org/10.1021/ma021718x
  66. T. Honda and T. Kawakatsu, Macromolecules, 39, 2340 (2006) https://doi.org/10.1021/ma052075z
  67. H.-W. Park, K. Im, B. Chung, M. Ree, T. Chang, K. Sawa, and H. Jinnai, Macromolecules, 40, 2603 (2007) https://doi.org/10.1021/ma062826c
  68. F. S. Bates, K. A. Koppi, M. Tirrell, K. Almdal, and K. Mortensen, Macromolecules, 27, 5934 (1994) https://doi.org/10.1021/ma00098a060
  69. M. Szwarc, Nature, 178, 1168 (1956) https://doi.org/10.1038/1781168a0
  70. H. L. Hsieh and R. P. Quirk, Anionic Polymerization: Principles and Practical Applications, Marcel-Dekker, New York, 1996
  71. A. Hasneen, S. J. Kim, and H. J. Paik, Macromol. Res., 15, 541 (2007) https://doi.org/10.1007/BF03218828
  72. D. H. Go, H. J. Jeon, T. H. Kim, G. Kim, J. H. Choi, J. Y. Lee, and J. Kim, Macromol. Res., 16, 659 (2008) https://doi.org/10.1007/BF03218576
  73. K. M. Kim, S. Y. Choi, H. J. Jeon, J. Y. Lee, D. J. Choo, J. Kim, Y. S. Kang, and H. O. Yoo, Macromol. Res., 16, 169 (2008) https://doi.org/10.1007/BF03218847
  74. S. D. Park, W. Xu, C. Chung, and Y. Kwon, Macromol. Res.,16, 155 (2008) https://doi.org/10.1007/BF03218845
  75. J. H. You, S. W. Choi, J. H. Kim, and Y. T. Kwak, Macromol. Res., 16, 609 (2008) https://doi.org/10.1007/BF03218568
  76. W. W. Yau, J. J. Kirkland, and D. D. Bly, Modern Size-Exclusion Liquid Chromatography, Practice of Gel Permeation and Gel Filtration Chromatograph, John Wiley & Sons, New York, 1979
  77. S. Mori and H. G. Barth, Size Exclusion Chromatography,Springer-Verlag, New York, 1999
  78. H. Cho, S. Park, M. Ree, T. Chang, J. C. Jung, and W. C. Zin, Macromol. Res., 14, 383 (2006) https://doi.org/10.1007/BF03219098
  79. H. C. Lee and T. Chang, Polymer, 37, 5747 (1996) https://doi.org/10.1016/S0032-3861(96)00510-1
  80. H. C. Lee, W. Lee, and T. Chang, Korea Polym. J., 4, 160(1996)
  81. T. Chang, H. C. Lee, W. Lee, S. Park, and C. Ko, Macromol. Chem. Phys., 200, 2188 (1999) https://doi.org/10.1002/(SICI)1521-3935(19991001)200:10<2188::AID-MACP2188>3.0.CO;2-F
  82. T. Chang, Adv. Polym. Sci., 163, 1 (2003)
  83. T. Chang, J. Polym. Sci. Part B: Polym. Phys., 43, 1591 (2005) https://doi.org/10.1002/polb.20440
  84. J. Ryu and T. Chang, Anal. Chem., 77, 6347 (2005) https://doi.org/10.1021/ac0507486
  85. W. Lee, H. Lee, J. Cha, T. Chang, K. J. Hanley, and T. P. Lodge, Macromolecules, 33, 5111 (2000) https://doi.org/10.1021/ma000011c
  86. P. J. Flory, J. Am. Chem. Soc., 62, 1561 (1940) https://doi.org/10.1021/ja01863a066
  87. H. Jinnai, Y. Nishikawa, T. Ikehara, and T. Nishi, NMR - 3D Analysis - Photopolymerization, 170, 115 (2004) https://doi.org/10.1007/b95533
  88. H. Dohi, H. Kimura, M. Kotani, T. Kaneko, T. Kitaoka, T. Nishi, and H. Jinnai, Polym. J., 39, 749 (2007) https://doi.org/10.1295/polymj.PJ2006259
  89. V. H. Mareau, S. Akasaka, T. Osaka, and H. Hasegawa, Macromolecules, 40, 9032 (2007) https://doi.org/10.1021/ma070906q
  90. K. Im, H. W. Park, Y. Kim, and T. Chang, Macromol. Res., 16, 544 (2008) https://doi.org/10.1007/BF03218557
  91. H. C. Lee and T. H. Chang, Macromolecules, 29, 7294 (1996) https://doi.org/10.1021/ma960536y
  92. W. Lee, D. Cho, B. O. Chun, T. Chang, and M. Ree, J. Chromatogr. A, 910, 51 (2001) https://doi.org/10.1016/S0021-9673(00)01163-8
  93. S. Park, D. Cho, J. Ryu, K. Kwon, W. Lee, and T. Chang, Macromolecules, 35, 5974 (2002) https://doi.org/10.1021/ma0205313
  94. G. Glockner, Gradient HPLC of Copolymers and Chromatographic Cross-Fractionation, Springer -Verlag, Berlin, 1992
  95. H. Pasch and B. Trathnigg, HPLC of Polymers, Springer- Verlag, Berlin, 1997
  96. D. Berek, Prog. Polym. Sci., 25, 873 (2000) https://doi.org/10.1016/S0079-6700(00)00021-6
  97. K. Im, H.-W. Park, S. Lee, and T. Chang, J. Chromatogr. A, 1216, 4606 (2009) https://doi.org/10.1016/j.chroma.2009.03.072
  98. J.-H. Ahn and W.-C. Zin, Macromolecules, 33, 641 (2000) https://doi.org/10.1021/ma9912812
  99. J. H. Rosedale and F. S. Bates, Macromolecules, 23, 2329 (1990) https://doi.org/10.1021/ma00210a032
  100. K. Almdal, K. A. Koppi, F. S. Bates, and K. Mortensen, Macromolecules, 25, 1743 (1992) https://doi.org/10.1021/ma00032a019
  101. N. P. Balsara, D. Perahia, C. R. Safinya, M. Tirrell, and T. P. Lodge, Macromolecules, 25, 3896 (1992) https://doi.org/10.1021/ma00041a011
  102. J. K. Kim, H. H. Lee, and K. B. Lee, Polym. Mater. Sci. Eng., 79, 330 (1998)
  103. S.-H. Lee and K. Char, Polym. Mater. Sci. Eng., 79, 314 (1998)
  104. T. P. Lodge, B. Pudil, and K. J. Hanley, Macromolecules, 35, 4707 (2002) https://doi.org/10.1021/ma0200975
  105. H. Kiessig, Ann. Phys., 10, 769 (1931)
  106. L. G. Parratt, Phys. Rev., 95, 359 (1954) https://doi.org/10.1103/PhysRev.95.359
  107. T. P. Russell, Mater. Sci. Rep., 5, 171 (1990) https://doi.org/10.1016/S0920-2307(05)80002-7
  108. J. Yoon, K. W. Kim, J. Kim, K. Heo, K. S. Jin, S. Jin, T. J. Shin, B. Lee, Y. Rho, B. Ahn, and M. Ree, Macromol. Res.,16, 575 (2008) https://doi.org/10.1007/BF03218563
  109. Y. Rancon and J. Charvolin, J. Phys. Chem., 92, 2646 (1988) https://doi.org/10.1021/j100320a049
  110. M. Clerc, A. M. Levelut, and J. F. Sadoc, J. Phys. II, 1, 1263(1991) https://doi.org/10.1051/jp2:1991132