• Title/Summary/Keyword: Microsystem

Search Result 158, Processing Time 0.03 seconds

Analysis and Evaluation of Capillary Passive Valves in Microfluidic Systems Using a Centrifugal Force

  • Cho, Han-Sang;Kim, Ho-Young;Kang, Ji-Yoon;Kwak, Seung-Min;Kim, Tae-Song
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.155-159
    • /
    • 2004
  • This work reports the theoretical and experimental investigations of capillary bust valves to regulate liquid flow in microchannels. The theoretical analysis uses the Young-Laplace equation and geometrical considerations to predict the pressure at the edge of the valve opening. Numerical simulations are employed to calculate the meniscus shape evolution while the interface is pinned at the valve edge. Microchannels and valves are fabricated using soft lithography. A wafer-rotating system, which can adjust the driving pressure by rotational speed, induces a liquid flow. Experimentally measured valve-bursting pressure agrees with theoretical predictions.

Development of Biological Cell Manipulation System using Visual Tracking Method

  • Lee, Geunho;Kang, Hyun-Jae;Kwon, Sang-Joo;Park, Gwi-Tae;Kim, Byungkyu
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2911-2914
    • /
    • 2003
  • Conventionally, biological manipulations have been performed manually with long training and pretty low success rates. To overcome this problem, a novel biological manipulation system has been developed to manipulate biological cells without any interference of a human operator, In this paper, we demonstrate a development of tole-autonomous Cell Manipulation System (CMS) using an image processing at a remote site. The CMS consists of two manipulators, a plane stage, and an optical microscope. We developed deformable template-model-matching algorithm for micro objects and pattern matching algorithm of end effect for these manipulators in order to control manipulators and the stage. Through manipulation of biological cells using these algorithms, the performance of the CMS is verified experimentally.

  • PDF

Comparative Quantification of Contractile Force of Cardiac Muscle Using a Micro-mechanical Force Sensing System

  • Ryu, Seok-Chang;Park, Suk-Ho;Kim, Deok-Ho;Kim, Byung-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1179-1182
    • /
    • 2005
  • To facilitate the cell based robot research, we presented a micro-mechanical force measurement system for the biological muscle actuators, which utilize glucose as a power source for potential application in a human body or blood vessels. The system is composed of a micro-manipulator, a force transducer with a glass probe, a signal processor, an inverted microscope and video recoding system. Using this measurement system, the contractile force and frequency of the cardiac myocytes were measured in real time and the magnitude of the contractile force of each cardiac myocyte on a different condition was compared. From the quantitative experimental results, we estimated that the force of cardiac myocytes is about $20{\sim}40\;{\mu}$N, and showed that there is difference between the control cells and the micro-patterned cells.

  • PDF

Contractile Force Measurements of Cardiac Myocytes Using a Micro-manipulation System

  • Park Suk-Ho;Ryu Seok-Kyu;Ryu Seok-Chang;Kim Deok-Ho;Kim Byung-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.668-674
    • /
    • 2006
  • In order to develop a cell based robot, we present a micro-mechanical force measurement system for the biological muscle actuators, which utilize glucose as a power source. The proposed measurement system is composed of a micro-manipulator, a force transducer with a glass probe, a signal processor, an inverted microscope and video recording system. Using this measurement system, the contractile force and frequency of the cardiac myocytes were measured in real time and the magnitudes of the contractile force of each cardiac myocyte under different conditions were compared. From the quantitative experimental results, we could estimate that the force of cardiac myocytes is about $20\sim40{\mu}N$, and show that there are differences between the control cells and the micro-patterned cells.

An Energy Efficient Algorithm Based on Clustering Formulation and Scheduling for Proportional Fairness in Wireless Sensor Networks

  • Cheng, Yongbo;You, Xing;Fu, Pengcheng;Wang, Zemei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.559-573
    • /
    • 2016
  • In this paper, we investigate the problem of achieving proportional fairness in hierarchical wireless sensor networks. Combining clustering formulation and scheduling, we maximize total bandwidth utility for proportional fairness while controlling the power consumption to a minimum value. This problem is decomposed into two sub-problems and solved in two stages, which are Clustering Formulation Stage and Scheduling Stage, respectively. The above algorithm, called CSPF_PC, runs in a network formulation sequence. In the Clustering Formulation Stage, we let the sensor nodes join to the cluster head nodes by adjusting transmit power in a greedy strategy; in the Scheduling Stage, the proportional fairness is achieved by scheduling the time-slot resource. Simulation results verify the superior performance of our algorithm over the compared algorithms on fairness index.

Integrated Micro-Mechanical Switches for RF Applications

  • Park, Jae Y.;Kim, Geun H.;Chung, Ki W .;Jong U. Bu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.952-958
    • /
    • 2000
  • 다양한 구조위 트랜스미션 라인과 힌지들을 갖는 고주파용 마이크로머신드 용량성 스위치들이 새롭게 디자인되었고 전기도금 기술, 저온 공정기술, 그리고 건식 식각기술들을 이용하여 제작되었다. 특히, 집적화된 용량성 스위치들이 높은 스위칭 on/off ratio와 on 캐패시턴스를 갖도록 하기 위하여 고유전율을 갖는 SrTiO3라는 상유전체를 절연체로 사용하였다. 제작된 스위치들은 8V의 구동전압, 0.08dB의 삽입손실, 42dB의 높은 isolation, 600의 on/off ratio, 그리고 50pF의 on 캐패시턴스의 특성들을 갖는다.

  • PDF

VOA fabrication with symmetric actuator (대칭구동기를 갖는 가변 광 감쇄기의 제작)

  • Kim, Tae-Youp;Hur, Jae-Sung;Moon, Sung;Shin, Hyun-Joon;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1912-1913
    • /
    • 2003
  • This paper presents a variable optical attenuator (VOA) that is fabricated using bosch deep silicon etching process [1] with silicon-on- insulator (SOI) wafer. The VOA consists of driving electrode, ground electrode, actuating mirror, and mechanical slower. In this VOA, actuating mirror is driven by electrostatic force [2] and the pull-in voltage is close to 13V, 28 V, 46V come along with the spring width of $3{\mu}m,\;5{\mu}m,\;7{\mu}m$ respectively.

  • PDF

An Integrated Cell Processor for Single Embryo Manipulation

  • Park, Jung-Yul;Jung, Seng-Hwan;Kim, Young-Ho;Kim, Byung-Kyu;Lee, Seung-Ki;Ju, Byeong-Kwon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.5
    • /
    • pp.241-246
    • /
    • 2004
  • In this paper, we present a novel integrated cell processor to handle individual embryos. Its functions are composed of transporting, isolation, orientation, and immobilization of cells. These functions are essential for biomanipulation of single cells, and have been typically carried out by a proficient operator. The purpose of this study is the automation of these functions for safe and effective cell manipulation using a MEMS based cell processor. This device is realized with a relatively simple design and fabrication process. Experimental results indicate that it can act as an efficient substitute for essential but very tiresome and repetitive manual work while contributing significantly to the improvement of speed and success rate of operation by facilitating cell manipulation. The cell viability test for the device is studied through the distribution of mitochondria in mice embryos and cultivation of cells for 86h.