• Title/Summary/Keyword: Microstructure properties

Search Result 4,066, Processing Time 0.034 seconds

Efficacy of supplementary cementitious material and hybrid fiber to develop the ultra high performance hybrid fiber reinforced concrete

  • Sharma, Raju;Bansal, Prem Pal
    • Advances in concrete construction
    • /
    • v.8 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • The rich recipe of ultra high performance concrete (UHPC) offers the higher mechanical, durability and dense microstructure property. The variable like cement/sand ratio, amount of supplementary cementitious material, water/binder ratio, amount of fiber etc. alters the UHPC hardened properties to any extent. Therefore, to understand the effects of these variables on the performance of UHPC, inevitably a stage-wise development is required. In the present experimental study, the effect of sand/cement ratio, the addition of finer material (fly ash and quartz powder) and, hybrid fiber on the fresh, compressive and microstructural property of UHPC is evaluated. The experiment is conducted in three phases; the first phase evaluates the flow value and strength attainment of ingredients, the second phase evaluates the efficiency of finer materials (fly ash and quartz powder) to develop the UHPC and the third phase evaluate the effect of hybrid fiber on the flow value and strength of ultra high performance hybrid fiber reinforced concrete (UHP-HFRC). It has been seen that the addition of fly ash improves the flow value and compressive strength of UHPC as compared to quartz powder. Further, the usage of hybrid fiber in fly ash contained matrix decreases the flow value and improves the strength of the UHP-HFRC matrix. The dense interface between matrix and fiber and, a higher amount of calcium silicate hydrate (CSH) in fly ash contained UHP-HFRC is revealed by SEM and XRD respectively. The dense interface (bond between the fiber and the UHPC matrix) and the higher CSH formation are the reason for the improvement in the compressive strength of fly ash based UHP-HFRC. The differential thermal analysis (DTA/TGA) shows the similar type of mass loss pattern, however, the amount of mass loss differs in fly ash and quartz powder contained UHP-HFRC.

Effects of Surface Treatment using Oxide-Dispersion-Strengthening on the Mechanical Properties of Zr-based Fuel Cladding Tubes (산화물 분산강화 표면처리에 따른 지르코늄 피복관의 기계적 강도)

  • Jung, Yang-Il;Kim, Il-Hyun;Kim, Hyun-Gil;Jang, Hun;Lee, Seung-Jae
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.271-276
    • /
    • 2019
  • Oxide-dispersion-strengthened (ODS) alloy has been developed to increase the mechanical strength of metallic materials; such an improvement can be realized by distributing fine oxide particles within the material matrix. In this study, the ODS layer was formed in the surface region of Zr-based alloy tubes by laser beam treatment. Two kinds of Zr-based alloys with different alloying elements and microstructures were used: KNF-M (recrystallized) and HANA-6 (partial recrystallized). To form the ODS layer, $Y_2O_3$-coated tubes were scanned by a laser beam, which induced penetration of $Y_2O_3$ particles into the substrates. The thickness of the ODS layer varied from 20 to $55{\mu}m$ depending on the laser beam conditions. A heat affected zone developed below the ODS layer; its thickness was larger in the KNF-M alloy than in the HANA-6 alloy. The ring tensile strengths of the KNF-M and HANA-6 alloy samples increased more than two times and 20-50%, respectively. This procedure was effective to increase the strength while maintaining the ductility in the case of the HANA-6 alloy samples; however, an abrupt brittle facture was observed in the KNF-M alloy samples. It is considered that the initial microstructure of the materials affects the formation of ODS and the mechanical behavior.

Interfacial Properties of Friction-Welded TiAl and SCM440 Alloys with Cu as Insert Metal (삽입금속 Cu를 이용한 TiAl 합금과 SCM440의 마찰용접 계면 특성)

  • Park, Sung-Hyun;Kim, Ki-Young;Park, Jong-Moon;Choi, In-Chul;Ito, Kazuhiro;Oh, Myung-Hoon
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.258-263
    • /
    • 2019
  • Since the directly bonded interface between TiAl alloy and SCM440 includes lots of cracks and generated intermetallic compounds(IMCs) such as TiC, FeTi, and $Fe_2Ti$, the interfacial strength can be significantly reduced. Therefore, in this study, Cu is selected as an insert metal to improve the lower tensile strength of the joint between TiAl alloy and SCM440 during friction welding. As a result, newly formed IMCs, such as $Cu_2TiAl$, CuTiAl, and $TiCu_2$, are found at the interface between TiAl alloy and Cu layer and the thickness of IMCs layers is found to vary with friction time. In addition, to determine the relationship between the thickness of the IMCs and the strength of the welded interfaces, a tensile test was performed using sub-size specimens obtained from the center to the peripheral region of the friction-welded interface. The results are discussed in terms of changes in the IMCs and the underlying deformation mechanism. Finally, it is found that the friction welding process needs to be idealized because IMCs generated between TiAl alloy and Cu act to not only increase the bonding strength but also form an easy path of fracture propagation.

A Study on the Mechanical Properties and Moisture Control Performance of Diatomite filled Olefin Foams (규조토를 함유한 올레핀계 폼의 기계적 물성 및 수분 제어 성능에 관한 연구)

  • Kim, Jae Yang;Lee, Ji Eun;Seong, Dong Gi
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.22-28
    • /
    • 2021
  • Products using diatomaceous earth, which are used in various fields, are optimized for moisture absorption, but have problems such as high hardness, powder flying, and rough surface feel. To improve this, an olefin-based foam having low hardness and high elasticity was prepared by adding an excessive amount of inorganic material using EVA (Ethylene vinyl acetate) having low hardness and excellent elasticity. Diatomaceous earth was added to impart moisture absorption characteristics of the foam, and the moisture absorption/drying characteristics showed a moisture absorption rate of about 10 to 15% and a moisture drying rate of 10 to 70% depending on the content of the diatomaceous earth. Through this study, it was possible to manufacture a water-absorbing olefin-based foam with diatomaceous earth added, and it was confirmed that the diatomaceous earth added to the foam had a great influence on water absorption and dissipation due to its microstructure and characteristics.

Electrochemical Characteristics of Synthesized Nb2O5-Li3VO4 Composites as Li Storage Materials

  • Yang, Youngmo;Seo, Hyungeun;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • The increasing demand for energy storage in mobile electronic devices and electric vehicles has emphasized the importance of electrochemical energy storage devices such as Li-ion batteries (LIBs) and supercapacitors. For reversible Li storage, alternative anode materials are actively being developed. In this study, we designed and fabricated an Nb2O5-Li3VO4 composite for use as an anode material in LIBs and hybrid supercapacitors. Nb2O5 powders were dissolved into a solution and the precursors were precipitated onto Li3VO4 through a simple, low-temperature hydrothermal reaction. The annealing process yielded an Nb2O5-Li3VO4 composite that was characterized by X-ray diffraction, electron microscopy, and X-ray photoelectron spectroscopy. Electrochemical tests revealed that the Nb2O5-Li3VO4 composite electrode demonstrated increased capacities of approximately 350 and 140 mAh g-1 at 0.1 and 5 C, respectively, were maintained up to 1000 cycles. The reversible capacity and rate capability of the composite electrode were enhanced compared to those of pure Nb2O5-based electrodes. These results can be attributed to the microstructure design of the synthesized composite material.

Fabrication and Magnetic Properties of Mg and BaFe12O19 Ferromagnetic Composite Powders by Mechanical Alloying (기계적합금화법에 의한 Mg-BaFe12O19 계 강자성 복합분말의 제조 및 자기특성)

  • Lee, Chung-Hyo
    • Korean Journal of Materials Research
    • /
    • v.31 no.2
    • /
    • pp.61-67
    • /
    • 2021
  • Fabrication of a ferromagnetic composite powder for the magnesium and BaFe12O19 system by mechanical alloying (MA) is investigated at room temperature. Mixtures of Mg and BaFe12O19 powders with a weight ratio of Mg:BaFe12O19 = 4:1, 3:2, 2:3 and 1:4 are used. Optimal MA conditions to obtain a ferromagnetic composite with fine microstructure are investigated by X-ray diffraction, differential scanning calorimetry (DSC) and vibrating sample magnetometer (VSM) measurement. It is found that Mg-BaFe12O19 composite powders in which BaFe12O19 is dispersed in Mg matrix are successfully produced by MA of BaFe12O19 with Mg for 80 min. for all compositions. Magnetization of Mg-BaFe12O19 composite powders gradually increases with increasing the amounts of BaFe12O19, whereas coercive force of MA powders gradually decreases due to the refinement of BaFe12O19 powders with MA time for all compositions. However, it can be seen that the coercivity of Mg-BaFe12O19 MA composite powders with a weight ratio of Mg:BaFe12O19=4:1 and 3:2 for MA 80 min. are still high, with values of 1260 Oe and 1320 Oe compared to that of Mg:BaFe12O19=1:4. This clearly suggests that the refinement of BaFe12O19 powders during MA process for Mg:BaFe12O19=4:1 and 3:2 tends to be suppressed due to ductile Mg powders.

Effect of Thermomechanical Process on Mechanical Property and Microstructure of 9Cr-1Mo Steel (열간가공이 9Cr-1Mo강의 기계적 성질과 미세조직에 미치는 영향)

  • Kim, Jun-Hwan;Baek, Jong-Hyuk;Han, Chang-Hee;Kim, Sung-Ho;Lee, Chan-Bock;Na, Kwang-Su;Kim, Seong-Ju
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.621-628
    • /
    • 2009
  • Thermomechanical processes were carried out to evaluate their effects on the mechanical and the microstructural property of a ferritic-martensitic steel. Modified 9Cr-1Mo steels were hot-rolled at a temperature of either $780^{\circ}C$ or $850^{\circ}C$ after normalizing at $1050^{\circ}C$ and then were air-cooled. Continuous annealing at $850^{\circ}C$ for 2 hours immediately after the hot rolling was also performed and they were compared to the specimens without thermomechanical process. The result showed that there were little differences between the hot rolled specimens in terms of the precipitation density and size. However, V content inside the MX precipitates increased in the case of the specimen rolled at $850^{\circ}C$. The application of the continuous annealing induced coarsening of the Nb-rich MX precipitation as well as an increase in the amount of V-rich MX precipitation, which is expected to enhance high temperature mechanical properties of the ferritic-martensitic steel.

A Reduction Process of Palladium Oxide Thin Films and Hydrogen Gas Sensing Properties of Reduced Palladium Thin Films (PdO 박막의 환원과 환원된 Pd박막의 수소 감지 특성)

  • Lee, Young Tack;Kim, Yeon Ju;Lee, Jun Min;Joe, Jin Hyoun;Lee, Wooyoung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.4
    • /
    • pp.347-352
    • /
    • 2010
  • This study reports a novel method off abricating highly sensitive hydrogen gas sensors based on PdO thin films. The PdO thin films with a thickness of 40 nm were deposited on Si substrates under Ar and $O_2$ ambient conditions using a reactive de magnetron sputtering system. Considerable changes in the resistance of the palladium oxide thin films were observed when they were initially exposed to hydrogen gas, as a result of the reduction process. The sensitivity of the PdO thin films was found to be as high as 90%. After the thin films were exposed to hydrogen gas, the nano-sized cracks were discovered to have formed on the surface of the PdO thin films. These types of nano-cracks that formed on the deoxidized PdO thin films are known to play a key role incausing a four-fold reduction of the response time of the absorption process. The results of this study demonstrate that deoxidized PdO thin films can be applied for use in the creation of high-sensitivity hydrogen sensors.

IR Absorption Property in NaNo-thick Nickel Cobalt Composite Silicides (나노급 두께의 Ni50Co50 복합 실리사이드의 적외선 흡수 특성 연구)

  • Song, Oh Sung;Kim, Jong Ryul;Choi, Young Youn
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.88-96
    • /
    • 2008
  • Thermal evaporated 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films were deposited to examine the energy saving properties of silicides formed by rapid thermal annealing at temperature ranging from 500 to $1,100^{\circ}C$ for 40 seconds. Thermal evaporated 10 nm-Ni/(70 nm-poly)Si films were also deposited as a reference using the same method for depositing the 10 nm-$Ni_{50}Co_{50}$/(70 nm-poly)Si films. A four-point probe was used to examine the sheet resistance. Transmission electron microscopy (TEM) and X-ray diffraction XRD were used to determine cross sectional microstructure and phase changes, respectively. UV-VIS-NIR and FT-IR (Fourier transform infrared spectroscopy) were used to examine the near-infrared (NIR) and middle-infrared (MIR) absorbance. TEM analysis confirmed that the uniform nickel-cobalt composite silicide layers approximately 21 to 55 nm in thickness had formed on the single and polycrystalline silicon substrates as well as on the 25 to 100 nm thick nickel silicide layers. In particular, nickel-cobalt composite silicides showed a low sheet resistance, even after rapid annealing at $1,100^{\circ}C$. Nickel-cobalt composite silicide and nickel silicide films on the single silicon substrates showed similar absorbance in the near-IR region, while those on the polycrystalline silicon substrates showed excellent absorbance until the 1,750 nm region. Silicides on polycrystalline substrates showed high absorbance in the middle IR region. Nickel-cobalt composite silicides on the poly-Si substrates annealed at $1,000^{\circ}C$ superior IR absorption on both NIR and MIR region. These results suggest that the newly proposed $Ni_{50}Co_{50}$ composite silicides may be suitable for applications of IR absorption coatings.

Creep Properties of Squeeze Infiltrated AS52 Mg/Al18B4O33w Composite (용탕가압침투 AS52 Mg/Al18B4O33w 복합재료의 크리프 특성)

  • Choi, Kye-Won;Park, Yong-Ha;Park, Bong-Gyu;Park, Yong-Ho;Park, Ik-Min;Cho, Kyung-Mox
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.7
    • /
    • pp.412-419
    • /
    • 2008
  • Creep behavior of the squeeze infiltrated AS52 Mg matrix composites reinforced with 15 vol% of aluminum borate whiskers($Al_{18}B_4O_{33}w$) fabricated squeeze infiltration method was investigated. Microstructure of the composites was observed as uniformly distributed reinforcement in the matrix without any particular defects of casting pores etc.. Creep test was carried out at the temperature of 150 and $200^{\circ}C$ under the applied stress range of 60~120 MPa. The creep resistance of the composite was significantly improved comparing with the unreinforced AS52 Mg alloy. The creep behavior of composites might be interpreted with the substructure invariant model successfully for the composite. Threshold stress of the composite exist for the creep deformation of the composite. The analysis of the creep behavior of the composite with threshold stress indicated that creep deformation was controlled by the lattice diffusion process of AS52 Mg matrix at given effective stresses and temperatures. Activation energy was also calculated to check lattice diffusion controlled creep behavior of the composite.