• Title/Summary/Keyword: Microstructure properties

Search Result 4,066, Processing Time 0.028 seconds

An Experimental Study on the Basic Properties of Penetrating repair material using Silicate-based Inorganic Materials (규산염계 무기 재료를 활용한 침투성 보수재의 기초 특성에 관한 실험적 연구)

  • Ha, Sang-Woo;Oh, Sung-Rok;Choi, Yung-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.39-45
    • /
    • 2017
  • In this study, permeable repair materials mainly composed of silicate - based inorganic materials(SIM), which are easily available domestically, were prepared as a basic study for the development of permeable repair materials using SIM. SIM were compared and examined for their performance as repair materials by selecting a product group which has many cases of use in foreign countries. The SIM used were mainly composed of sodium, potassium and lithium silicate. Performance evaluation of SIM was performed by absorption and penetration, compression and adhesion, rapid chloride ion penetration, rapid freezing and thawing, and chemical resistance test. According to the test results, SIM showed effective performance in all areas, mainly because SIM permeates into the interior of the capillary and has a dense internal microstructure. Therefore, it can be used variously to improve the durability of concrete based on the results of this experiment.

A study on the hard surfacing Characteristics of STS420J2 by using Diode laser (Diode laser를 이용한 STS420J2의 표면경화 특성에 관한 연구)

  • Lee, Tae-Yang;Lim, Byung-Chul;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5460-5466
    • /
    • 2014
  • In this study, mainly for kitchen knives and small swords, cutlery, etc. STS420J2 used material used for the experiments. In order to cure the surface of the test piece after the rough grinding and fine grinding was performed in order polishing. Perform the surface hardening of STS420J2 local area by using a diode laser. The output of the laser diode and the feed rate to the process variable. Micro-hardness testing, microstructure testing, scanning electron microscope testing(SEM), the heat input to the analysis. After analyzing the experiment to compare the mechanical properties of the material. When using a diode laser to assess the soundness of the surface hardening. Accordingly, the process for deriving the optimum demonstrate the feasibility.

Thermophysical Properties of Copper/graphite Flake Composites by Electroless Plating and Spark Plasma Sintering (무전해도금 및 방전 플라즈마 소결을 이용한 구리/흑연 복합재료 제조 및 열물성 특성 평가)

  • Lee, Jaesung;Kang, Ji Yeon;Kim, Seulgi;Jung, Chanhoe;Lee, Dongju
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.25-30
    • /
    • 2020
  • Recently, the amount of heat generated in devices has been increasing due to the miniaturization and high performance of electronic devices. Cu-graphite composites are emerging as a heat sink material, but its capability is limited due to the weak interface bonding between the two materials. To overcome these problems, Cu nanoparticles were deposited on a graphite flake surface by electroless plating to increase the interfacial bonds between Cu and graphite, and then composite materials were consolidated by spark plasma sintering. The Cu content was varied from 20 wt.% to 60 wt.% to investigate the effect of the graphite fraction and microstructure on thermal conductivity of the Cu-graphite composites. The highest thermal conductivity of 692 W m-1K-1 was achieved for the composite with 40 wt.% Cu. The measured coefficients of thermal expansion of the composites ranged from 5.36 × 10-6 to 3.06 × 10-6K-1. We anticipate that the Cu-graphite composites have remarkable potential for heat dissipation applications in energy storage and electronics owing to their high thermal conductivity and low thermal expansion coefficient.

A Study on Manufacturing Method of iron Sickles Found in Jangjae-ri, Yeongi, Korea (연기 장재리 출토 철겸의 제작방법 연구)

  • Cho, Hyun Kyung;Cho, Nam Chul;Lee, Seon Young
    • Journal of Conservation Science
    • /
    • v.31 no.4
    • /
    • pp.489-497
    • /
    • 2015
  • Iron sickle is tool used in various ways and have various form. It has agricultural feature as well as is used in weapon. Previous studies have been focused on features of farming tools. In this study, metallurgical analysis of iron sickles are introduced because examples of analysis for iron sickles is rare. Two sickles form Yeongi Jangjae-ri are investigated and compared to one sickle of Yeongi Songwon-ri. Three sickles have forging molding process and heat treatment process. No.1 sickle of Jangjae-ri have martensite of quenching. No.2 sickle of Jangjae-ri was undergone high temperature as compared with others. This show manufacturing technology of sickles from Jangjae-ri in over the Songwon-ri's.

A study on the hard surfacing Characteristics of SM45C by using Diode laser (다이오드 레이저를 이용한 SM45C의 표면경화 특성에 관한 연구)

  • Lim, Byung-Chul;Lee, Hong-Sub;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1620-1625
    • /
    • 2015
  • In this study, a variety of industrial gears, shafts, chains, rollers, mold, etc. are widely used inautomotive steel carbon steel for machine structural SM45C typical material used for the experiments. In order to cure the surface of the test piece after the rough grinding and fine grinding was performed in order polishing. Perform the surface hardening of SM45C lacal area by using a diode laser. The output of the laser diode and the feed rate to the process variable. Micro-hardness testing, microstructure testing, scanning electron microscope testing(SEM), the heat input to the analysis. After analyzing the experiment to compare the mechanical properties of the material. When using a diode laser to assess the soundness of the surface hardening. Accordingly, the process for deriving the optimum demonstrate the feasibility.

Development of a High Strength Al-Si-Mg Alloy for Rheo-diecasting (레오다이캐스팅을 위한 고강도 Al-Si-Mg 합금설계)

  • Park, Kyu-Sup;Jang, Young-Soo;Choi, Byoung-Hee;Kang, Byung-Kuen;Kim, Hae-Soo;Choi, Sang-Ho;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.98-103
    • /
    • 2012
  • Recently, development of Al-based alloys for high mechanical performance has been an important issue in automotive industry. The present study focused on the design of a high strength Al-based alloy for rheo-diecasting. The research was based on thermodynamic calculation and experimentals to optimize the alloy compositions. Two important considerations were carried out: i) to obtain uniform slurry with fine and globular microstructures for rheo-diecasting, ii) to be strengthend by T6 heat treatment. In order to evaluate the effect of Si content on the slurry microstructure and castability, thermodynamic calculation and fluidity test were carried out. The effects of various alloying components, such as Mg, Cu and Zn, on age hardenability were also investigated. The mechanical properties of the rheo-diecasting products using the newly developed alloy are 324MPa in tensile strength, 289MPa in yield strength, and 11.2% in elongation after T6 heat treatment.

A Study on the Preparation and Properties of $RuO_2$ Thin Films for Ferroelectric Memory Device Applications (강유전체 메모리 소자 응용을 위한 $RuO_2$ 박막의 제작과 특성에 관한 연구)

  • 강성준;정양희
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.494-498
    • /
    • 2000
  • RuO$_2$ thin films are prepared by RF magnetron reactive sputtering and their characteristics of crystallization, microstructure, surface roughness and resistivity are studied with various $O_2$/ (Ar+O$_2$) ratios and substrate temperatures. As $O_2$/(Ar+O$_2$) ratio decreases and substrate temperature increases, the preferred growing plane of RuO$_2$ thin films are changed from (110) to (101) plane. With increase of the $O_2$/(Ar+O$_2$) ratio from 20% to 50%, the surface roughness and the resistivity of RuO$_2$ thin films increase from 2.38nm to 7.81 nm, and from 103.6 $\mu$$\Omega$-cm to 227 $\mu$$\Omega$-cm, respectively, but the deposition rate decreases from 47 nm/min to 17 nm/min. On the other hand, as the substrate temperature increases from room temperature to 500 $^{\circ}C$, resistivity decreases from 210.5 $\mu$$\Omega$-cm to 93.7 $\mu$$\Omega$-cm. RuO$_2$ thin film deposited at 300 $^{\circ}C$ shows a excellent surface roughness of 2.38 nm. As the annealing temperature increases in the range between 400 $^{\circ}C$ and 650 $^{\circ}C$, the resistivity decreases because of the improvement of crystallinity. We find that RuO$_2$ thin film deposited at 20% of $O_2$/(Ar+O$_2$) ratio and 300 t of substrate temperature shows excellent combination of surface smoothness and low resistivity so that it is well Qualified for bottom electrodes for ferroelectric thin films.

  • PDF

Effect of Porosity on the Fracture Toughness and Electrical Conductivity of Pressureless Sintered ${\beta}-SiC-ZrB_2$ Composites (무가압소결(無加壓燒結)한 ${\beta}-SiC-ZrB_2$ 복합체(複合體)의 파괴인성(破壞忍性)과 전기전도성(電氣傳導性)에 미치는 기공(氣孔)의 영향)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.847-849
    • /
    • 1998
  • The effect of $Al_{2}O_{3}$ additives on the microstructure, mechanical and electrical properties of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites by pressureless sintering were investigated. The ${\beta}$-SiC+39vol.%$ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_{2}O_{3}$ powder as a liquid forming additives at $1950^{\circ}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and weakly $\alpha$-SiC(4H), $\beta$-SiC(15R) phase. The relative density of composites was lowered by gaseous products of the result of reaction between $\beta$-SiC and $Al_{2}O_{3}$ therefore, porosity was increased with increased $Al_{2}O_{3}$ contents. The fracture toughness of composites was decreased with increased $Al_{2}O_{3}$ contents, and showed the maximum value of $1.4197MPa{\cdot}m^{1/2}$ for composite added with 4wt.% $Al_{2}O_{3}$ additives. The electrical resistivity of ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composite was increased with increased $Al_{2}O_{3}$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

Voltage Enhancement of ZnO Oxide Varistors for Various Y2O3 Doping Compositions

  • Yoon, Jung-Rag;Lee, Chang-Bae;Lee, Kyung-Min;Lee, Heun-Young;Lee, Serk-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.5
    • /
    • pp.152-155
    • /
    • 2009
  • The microstructure and the electrical properties of a ZnO varistor, which was composed of a ZnO-$Bi_2O_3$-$Sb_2O_3$-CoO- $MnO_2$ -NiO-$Nd_2O_3$ system, were investigated at various $Y_2O_3$ addition concentrations. $Y_2O_3$ played a role in the inhibition of the grain growth. As the $Y_2O_3$ content increased, the average grain size decreased from $6.8{\mu}m$ to $4{\mu}m$, and the varistor voltage($V_{1mA}$) greatly increased from 275 to 400 V/mm. The nonlinearity coefficient ($\alpha$) decreased from 72 to 65 with increasing $Y_2O_3$ amount. On the other hand, the leakage current ($I_L$) increased from 0.2 to 0.9 ${\mu}A$. These results confirmed that doping the varistors with $Y_2O_3$ is a promising production route for production of a higher fine-grained varistor voltage ($V_{1mA}$) which can dramatically reduce the size of the varistors.

Superplastic Properties of Al-Mg-Cu-Mn Alloys (Al-Mg-Cu-Mn 합금의 초소성 특성)

  • Park, Jong-U;Kim, Hui-Su;Mun, In-Gi;Ha, Gi-Yun;Lee, Deok-Yeol
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.132-139
    • /
    • 1995
  • Tnermomechanical treatment consisting of homogenizing, hot and warm rolling were introduced to Al-MgCu-Mn alloys for obtaining superplasticity. The factors affecting the superplasticity of the alloys were investigated by optical and transmission electron microscopy. Large particles which had not been decomposed during homogenizing treatments remained stable in the hot and warm rolling processes. These particles were a source of cavitation and poor elongation in superplastic deformation. On the other hand, fine precipitates were produced during thermomechanical processing, and resulted in improvement of superplasticity by stabilizing microstructure. Two-step homogenizing and air cooling process was more effective than onestep homogenizing and furance cooling process in removing microsegregations and producing fine particles.

  • PDF