• Title/Summary/Keyword: Microstrip-fed antenna

Search Result 196, Processing Time 0.025 seconds

Inductive Loaded Microstrip Patch Antenna Using Aperture Coupled Fed (개구면 결합 급전을 이용한 Inductive Loaded 마이크로스트립 패치 안테나)

  • Koo, Hwan-Mo;Yoon, Young-Min;Kim, Boo-Gyoun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.35-42
    • /
    • 2012
  • An inductive loaded microstrip patch antenna using aperture coupled feeding is designed and an impedance bandwidth enhancement method using a shunt stub is investigated. The -10 dB impedance bandwidth of the AIMPA with a shunt stub is increased up to about 5.51 %. The impedance bandwidth of the corresponding AIMPA without a shunt stub is 2.4 %. The increase of the impedance bandwidth of the AIMPA with a shunt stub is about 129.6 % compared to that of the corresponding AIMPA without a shunt stub.

Microstrip Circular Slot Antenna Using a Spiral Line (스파이럴 라인을 이용한 마이크로스크립 원형 슬롯 안테나)

  • Kim, Myoung-Ki;Park, Ik-Mo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.5
    • /
    • pp.16-22
    • /
    • 2001
  • A novel microstrip circular slot antenna fed by a spiral line is presented in this paper. This antenna is a planar equivalent structure of an eccentric spiral antenna generates a circularly-polarized wave. We have investigated the input impedance and radiation characteristics of this antenna by using an EM (electromagnetic) simulator, and obtained a design method [or optimum structure. The main characteristic of the antenna is that the main beam direction is off-normal to the antenna plane and moves linearly into ${\theta }$ and ${\phi }$ direction as the frequency increases. This feature allows one to predict the main beam direction easily for a given operating frequency. This antenna has axial ratio lower than 3 dB in the direction of main beam over one octave bandwidth.

  • PDF

Compact 1×2 and 2×2 Dual Polarized Series-Fed Antenna Array for X-Band Airborne Synthetic Aperture Radar Applications

  • Kothapudi, Venkata Kishore;Kumar, Vijay
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.117-128
    • /
    • 2018
  • In this paper, compact linear dual polarized series-fed $1{\times}2$ linear and $2{\times}2$ planar arrays antennas for airborne SAR applications are proposed. The proposed antenna design consists of a square radiating patch that is placed on top of the substrate, a quarter wave transformer and $50-{\Omega}$ matched transformer. Matching between a radiating patch and the $50-{\Omega}$ microstrip line is accomplished through a direct coupled-feed technique with the help of an impedance inverter (${\lambda}/4$ impedance transformer) placed at both horizontal and vertical planes, in the case of the $2{\times}2$ planar array. The overall size for the prototype-1 and prototype-2 fabricated antennas are $1.9305{\times}0.9652{\times}0.05106{{\lambda}_0}^3$ and $1.9305{\times}1.9305{\times}0.05106{{\lambda}_0}^3$, respectively. The fabricated structure has been tested, and the experimental results are similar to the simulated ones. The CST MWS simulated and vector network analyzer measured reflection coefficient ($S_{11}$) results were compared, and they indicate that the proposed antenna prototype-1 yields the impedance bandwidth >140 MHz (9.56-9.72 GHz) defined by $S_{11}$<-10 dB with 1.43%, and $S_{21}$<-25 dB in the case of prototype-2 (9.58-9.74 GHz, $S_{11}$< -10 dB) >140 MHz for all the individual ports. The surface currents and the E- and H-field distributions were studied for a better understanding of the polarization mechanism. The measured results of the proposed dual polarized antenna were in accordance with the simulated analysis and showed good performance of the S-parameters and radiation patterns (co-pol and cross-pol), gain, efficiency, front-to-back ratio, half-power beam width) at the resonant frequency. With these features and its compact size, the proposed antenna will be suitable for X-band airborne synthetic aperture radar applications.

Design of CPW fed antenna using high dielectric constant materials (고유전율 유전체를 이용한 CPW 급전 안테나의 설계)

  • 심성훈;강종윤;윤석진;윤영중;김현재
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.559-562
    • /
    • 2000
  • In this paper, coplanar waveguide fed antennas (CPWFAs) insetting two slits to boundary of the square microstrip patch are presented. These slits play roles in not only lowering a resonant frequency but also fine-tuning for the proposed antenna together with open stub of CPW feed line. The CPWFAs were designed and manufactured using microwave dielectrics (Al,Mg)TaO$_2$ having high dielectric-constant ($\varepsilon$r=20). The return loss and input impedance of the CPWFAs were investigated in terms of the slit length and open stub length of CPW feed line. It is shown that a resonant frequency decreases as the slit length increases.

  • PDF

Dice-Five Polarization-Agile Corner-Fed Patch Array Antenna

  • Vallecchi, Andrea
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.250-256
    • /
    • 2005
  • A novel planar polarization-agile microstrip subarray is proposed and its performance assessed by a thorough numerical investigation. The subarray consists of five square patches with a central element, directly coupled to a pair of microstrip feed lines by a cross-shaped aperture, which spreads the power outwards to the other patches through a network of suitable connections. By properly exciting the antenna at its input ports, any kind of polarization of the radiated field can be accomplished with fairly low cross-polarization levels. Moreover, since only two feed lines are required to drive the whole subarray, polarization agility is simply and attractively achieved by a single phase-shift circuit. The design concept is described and the results of the analyses and simulations performed by two completely independent full-wave approaches are presented and discussed.

  • PDF

A study of characteristics of X-band microstrip patch antenna affected b permittivity and electrical thickness of the substrate (기판의 유전율 및 전기적 두께가 X-벤드용 마이크로스트립 패치 안테나의 특성에 미치는 영향에 관한 연구)

  • 박성교;김준현;박종배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.65-81
    • /
    • 1996
  • In this study forty-five X-bnd rectangular microstrip patch antennas fed by microstrip line using ${\lambda}$/4 transformer were fabricated on teflon substrates with low high permittivities and varous thickness (substrate thickness : 0.6 ~ 2.4 mm, permittivities : 2.15 ~ 10.0), and effects of permittivity and electrical thickness on antenna characteristics were studied with measured return loss (1/S$_{11}$) and resonant frequencies. When substrate electrical thickness was greater than 0.060 ${\lambda}_{0}$return loss was very good and genrally more than 20 dB, but resonance characteristics was somewhat unstable. The more than 0.088 ${\lambda}_{0}$ the thickness was, the more unstable it was. As a result, in the rest range except 12, 13 GHz we had very good mesured return loss iwth greater than 20 dB, and in the range 7 to 9 GHz resonant frequencies were within $\pm$2 % error, on ${\epsilon}_{r}$=5.0, height = 2.4 mm substrate.

  • PDF

Microstrip Fed Meander Slot Antenna with Open-End for the RF Remote Controller (RF 리모컨용 마이크로스트립 급전 개방 종단을 갖는 미앤더 슬롯 안테나)

  • Jin, Jeong-Hi;Kim, Ui-Jung;Jang, Soo-Young;Lee, Young-Soon;Cho, Young-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.143-150
    • /
    • 2007
  • A meander slot antenna with open-end fed by a microstrip line which can be used at 400 MHz ISM band is newly proposed. The main difference between the proposed slot antenna and the previous slot antenna is the introduction of the open-end to miniaturize the previous meander slot antenna in the space restricted within narrow limit. In order to check the validity of the proposed antenna, the resonant frequency and radiation pattern of the proposed antenna have been simulated and examined. Good agreements between simulated results and measured results have been observed.

Novel Coupling Condition between Optical Fiber and Microstrip Antenna in Photonic Antenna (Photonic 안테나에서 광섬유와 마이크로스트립 안테나사이의 새로운 결합조건)

  • Ho Kwang-Chun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.31-37
    • /
    • 2006
  • Strongly motivated by the need for significant reduction in the optics-to-antenna interface circuitry used in a Photonically controlled array, it has proposed the design development of a novel 'true photonic antenna' consisted of optical fiber and micro-strip antenna. To clarify the design capability of the geometry, modal transmission-line theory including the discontinuity property between circular i,nd planar guiding structures is defined, md the optical power coupling of a slot-coupled microstrip antenna directly fed from an optical fiber using photoconductive effect is evaluated numerically. The numerical results reveal that the maximum power transfer between the two different guiding structures occurs at a new point in which the guiding powers of two rigorous modes are equally partitioned.

Design for Microstrip Patch Antenna with Dual Frequency and Dual Polarization for W-CDMA System

  • Min, Kyeong-Sik;Park, Se-Hyun;Kim, Dong-Chul;Hiroyuki Arai
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.276-279
    • /
    • 1999
  • This paper proposes a design for microstrip patch antenna with dual resonance and dual polarization fed by proximity coupled quarter wavelength stub. The antenna characteristics are analyzed by the FDTD method with Mur's 2nd order ABC. From the simulation results based on the FDTD method, frequency characteristics of structure parameters such as the patch size and the offset feed are investigated. The numerical results are compared with the experimental results, and the comparison shows reasonable agreement for a design frequency.

  • PDF

Analysis of a Circular Microstrip Patch Antenna with Dielectric Superstrate using the Rigorous Probe Feed Model (정확한 급전 구조를 고려한 레이돔 원형 패치 안테나 해석)

  • 최동혁;박경빈;박성욱
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.859-867
    • /
    • 2000
  • In order to analyze the effect of a cover layer or radome for an antenna, the moment method is applied to the analysis of the circular microstrip patch antenna with dielectric superstrate fed by coaxial probe. The probe feed is modeled as a attachment mode method which can solve more exact analysis. In case of a ideal probe feed modeling, the probe self-impedance as well as the rapidly-varying patch current at the vicinity of the feed point was neglected. But a rigorous probe feed model which overcomes these deficiencies are developed, and used in the analysis of isolated circular patches. Measurements were performed to validate the numerical results. These are good agreement with each other.

  • PDF