DOI QR코드

DOI QR Code

Inductive Loaded Microstrip Patch Antenna Using Aperture Coupled Fed

개구면 결합 급전을 이용한 Inductive Loaded 마이크로스트립 패치 안테나

  • Koo, Hwan-Mo (School of Electronic Engineering, Soongsil University) ;
  • Yoon, Young-Min (School of Electronic Engineering, Soongsil University) ;
  • Kim, Boo-Gyoun (School of Electronic Engineering, Soongsil University)
  • 구환모 (숭실대학교 정보통신전자공학부) ;
  • 윤영민 (숭실대학교 정보통신전자공학부) ;
  • 김부균 (숭실대학교 정보통신전자공학부)
  • Received : 2012.05.07
  • Published : 2012.09.25

Abstract

An inductive loaded microstrip patch antenna using aperture coupled feeding is designed and an impedance bandwidth enhancement method using a shunt stub is investigated. The -10 dB impedance bandwidth of the AIMPA with a shunt stub is increased up to about 5.51 %. The impedance bandwidth of the corresponding AIMPA without a shunt stub is 2.4 %. The increase of the impedance bandwidth of the AIMPA with a shunt stub is about 129.6 % compared to that of the corresponding AIMPA without a shunt stub.

개구면 결합 급전 방법을 이용하여 inductive loaded 마이크로스트립 패치 안테나를 설계하고 병렬 스터브를 이용하여 임피던스 대역폭을 넓히는 방법에 대해 연구하였다. 급전선로에 병렬 스터브를 삽입하여 AIMPA의 임피던스 대역폭을 확장시켰다. 병렬 스터브를 삽입한 AIMPA의 -10 dB 임피던스 대역폭은 5.51 %로 병렬 스터브를 삽입하지 않은 AIMPA의 임피던스 대역폭 2.4 %와 비교하여 대역폭이 약 129.6 % 증가함을 볼 수 있었다. -10 dB 대역폭 내에서 방사 패턴의 전체적인 모양은 크게 변화하지 않음을 확인하였다.

Keywords

References

  1. Marija M. Nikolic, Antonije R. Djordjevic, and Arye Nehorai, Microstrip Antennas With Suppressed Radiation in Horizontal Directions and Reduced Coupling," IEEE Trans. on Antennas Prop., vol. 53, no. 11, pp. 3469-3476, Nov. 2005. https://doi.org/10.1109/TAP.2005.858847
  2. Tae-Young Kim, Young-Min Yoon, Gun-Su Kim, and Boo-Gyoun Kim, "] A Linear Phased Array Antenna Composed of Inductive Loaded Patch Antennas," IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, vol 10 pp. 1051-1054, Oct. 2011. https://doi.org/10.1109/LAWP.2011.2169930
  3. D. M. Pozar, "Microstrip antenna aperture coupled to a microstripline," Electron. Lett., vol. 21, no. 2, pp. 49-50, Jan, 1985. https://doi.org/10.1049/el:19850034
  4. S. D. Targonski, R. B. Waterhouse, and D. M. Pozar, "Design of Wide-Band Aperture-Stacked Patch Microstrip Antennas," IEEE Trans. Antennas Propagat., vol. 46, no. 9, pp. 1245- 1251, Sep. 1998. https://doi.org/10.1109/8.719966
  5. Y. Lu, H. Wang and D. G. Fang, "A Novel Wideband Aperture-Coupled Circularly Polarized Stacked Patch Antenna," The 2006 4th Asia-Pacific Conference on Environmental Electromagnetics, pp. 904-907, August, 2006.
  6. S. K. Pavuluri, C. Wang, and A. J. Sangster, "High Efficiency Wideband Aperture-Coupled Stacked Patch Antennas Assembled Using Millimeter Thick Micromachined Polymer Structure," IEEE Trans. Antennas Propagat., vol. 58, no. 11, pp. 3616-3621, Nov. 2010. https://doi.org/10.1109/TAP.2010.2071334
  7. D. M. Pozar and S. D. Targonski, "Improved Coupling For Aperture Coupled Microstrip Antennas," Electron. Lett., vol. 27, no. 13, pp. 1129-1131, June, 1991. https://doi.org/10.1049/el:19910705
  8. P. L. Sullivan and D. H. Schaubert, "] Analysis of an Aperture Coupled Microstrip Antenna," IEEE Trans. Antennas Propagat., vol. 34, no. 8, pp. 977-984, August. 1986. https://doi.org/10.1109/TAP.1986.1143929
  9. D. M. Pozar, Microwave Engineering 3rd Ed. Wiley, 2005.

Cited by

  1. Scene-based Nonuniformity Correction Complemented by Block Reweighting and Global Offset Initialization vol.22, pp.8, 2012, https://doi.org/10.9708/jksci.2017.22.08.015
  2. Scene-based Nonuniformity Correction by Deep Neural Network with Image Roughness-like and Spatial Noise Cost Functions vol.24, pp.6, 2012, https://doi.org/10.9708/jksci.2019.24.06.011