• Title/Summary/Keyword: Microstrip patch antenna

Search Result 594, Processing Time 0.024 seconds

Design of L-shaped Dual Inset Feeding Microstrip Stacked Patch Antenna for 2.5GHz Band (이중 L형 인셋 급전된 2.5GHz용 적층 마이크로 스트립 안테나의 설계)

  • Kim, Gun-Kyun;Kim, On;Rhee, Seung-Yeop
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.461-466
    • /
    • 2019
  • In this paper, we have studied the improvement of gain and bandwidth characteristics by using double feeding and L-shaped inset feed line matching circuit in microstrip stacked patch antenna which is widely used to broaden the gain of general microstrip antenna. The proposed structure is composed of two feeding edges of the main patch antenna, each of them are connected to a feeding line having an L shaped inset feeder. And the parasitic patch is placed at a proper distance above the main patch. The size of the main patch is designed so that the resonance frequency is close to the center frequency of the target frequency band. The experimental results show that the bandwidth was increased more than 180MHz in the 2.3-2.7 GHz band, which is more interesting than the single feed, and the gain improvement of 2.5dBi was obtained at 2.7GHz.

Microstrip patch antenna using 3 dimensional microstrip transition (3차원 천이를 이용한 마이크로스트립 패치 안테나)

  • 박동국;최형동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.817-821
    • /
    • 2001
  • In this paper, we design a microstrip patch antenna using 3-dimensional microstrip transition with the VSWR 1.3 over the PCS band (1.75 -1.87 GHz). We study experimentally the effect of the antenna parameters on antenna input impedance. And using the proposed antenna, we fabricate a polarization diversity any antenna and discuss the possibility of antenna for PCS base station.

  • PDF

Design of a Dual-fed Microstrip Patch Antenna (이중급전 마이크로스트립 패치 안테나 설계)

  • Lee, Jong-Ig;Yeo, Junho;Kim, Gun-kyun;Rhee, Seung-Yeop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.79-80
    • /
    • 2016
  • In this paper, we considered a design method for a microstrip patch antenna fed through two radiating edges by two feeding microstrip lines. Two feedlines are made to have a phase difference of 180 degree with each other in order to reduce cross-polarization level radiated from the antenna. The operation principle and design procedure for the considered antenna are explained using equivalent circuits. In order to check the validity of this study, the results for reflection coefficients of the antenna obtained by the proposed equivalent circuit method and the simulation using commercial antenna design tool are compared with each other.

  • PDF

Design and Fabrication of Array antenna in the WLAN Band (무선랜 대역의 배열 안테나 설계 및 제작)

  • Park, Yong-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.779-783
    • /
    • 2012
  • In this paper, we studied the design and fabrication of $2{\times}2$ array-type microstrip patch antenna to be used in wireless communication systems operating at around 5GHz band. To obtain wide bandwidth and high gain, antenna parameters such as patch size, inter patch space are simulated by HFSS(High Frequency Structure Simulator). From these parameters, the $2{\times}2$ array-type microstrip patch antenna is fabricated using FR-4 substrate. The measured results of the antenna are as follows: The center frequency of 5.06GHz, insertion loss of -44dB, bandwidth of 200MHz, and VWSR of 1.1.

The Design of a PCS Band Microstrip Patch Antenna with Auxiliary Wire and Annular Gap (보조 도선과 Annular Gap을 추가한 PCS 대역 마이크로스트립 패치 안테나 설계)

  • Choi, Kyoung-Sik;Yoon, Jong-Soeb;Ryu, Mi-Ra;Lee, Won-Hui;Hur, Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.329-338
    • /
    • 2001
  • In this paper, we designed microstrip patch antenna to enhance the weak point of general microstrip patch antenna that has narrow bandwidth and analyzed that. To reduce reactance in probe feed antenna, capacitive gap added to the patch. Using single patch and auxiliary wire, makes dual frequency resonant. So bandwidth is improved and gain also becomes higher. To verify with experiment, PCS band antenna is designed, fabricated. For PCS band antenna, bandwidth is 180 MHz in VSWR<1.5 and gain is 8.6 dBi.

  • PDF

A Study on Resonance Frequency Accuracy of Microstrip Patch Antenna Design with Inset-Feed Structure (Inset 급전구조를 갖는 마이크로스트립 패치 안테나 설계의 공진주파수 정확도에 관한 연구)

  • Kim, Jae-Yeon;Chang, Tae-Soon;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.73-78
    • /
    • 2021
  • To minimize the resonance frequency error when design Inset-Fed Microstrip Patch Antenna using current formulas. Especially It is found that a constant relation between Antenna patch width and frequency error. Using this relation, calculation frequency and simulation frequency are compared. Finally the comparison induced a formula of revised antenna patch width for accurate frequency in 2-10 GHz. And this formula reduced 2.54% of average frequency error. Last, the Antenna which has same variation with the simulation was producted and measured. It proved the formula's validity.

Spectral Domain Analysis of Input Impedance and Radiation Pattern in Rectangular Microstrip Patch Antenna on Anisotropy Substrates with Airgap (공기 갭을 갖는 이방성 매질 위의 사각 마이크로스트립 패치 안테나의 입력 임피던스와 방사패턴에 대한파수 영역 해석)

  • 윤중한;곽경섭
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.5
    • /
    • pp.187-196
    • /
    • 2003
  • Effects of Airgap and anisotropy substrate on input impedance and radiation pattern of rectangular microstrip patch antenna are studied in terms of an integral equation formulation. The input impedance and radiation pattern of microstrip patch antenna is investigated by using Galerkin's moment method in solving the integral equation. Sinusoidal functions are selected as basis functions, which resemble in the actual standing wave on the Patch. From the numerical results, the variation of input impedance and radiation patterns in the variation of air gap thickness, anisotropy ratio of substrate, and relative permittivity of anisotropy substrate are presented.

Analysis for Usefulness of Taguchi's Orthogonal Array in Microstrip Patch Antenna Design (마이크로스트립 패치 안테나 설계에서 타구치 직교배열표의 유용성 분석)

  • Kim, Jae-Yeon;Chang, Tae-Soon;Hur, Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.41-46
    • /
    • 2019
  • This paper is analysis on usefulness of Microstrip patch antenna design using Taguchi's Orthogonal array. For comparison, the shape of U-slot and Feed line elements are decided as a parameter in Microstrip patch antenna. And all the possible result of 19,683 times simulation using parameter sweep and the result of Taguchi's orthogonal arrays are compared. The simulation of Parameter sweep and Orthogonal arrays has 3.7% error on 10dB Bandwidth. Finally, It is identified that 19,683 times parameter sweep simulation can be reduced to 27 times with Taguchi's orthogonal arrays but still it represents antenna parameter characters well.

Broad-band Microstrip Patch Antenna with Application in the 8-WLL System (B-WLL용 광대역 마이크로스트립 안테나)

  • 서성호;오순수;윤미경;김영식;오창열
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2000.11a
    • /
    • pp.381-384
    • /
    • 2000
  • A microstrip patch antenna with B-WLL applications is designed at 26.8GHz. A broad band is obtained by two additional parasitic elements which are closely located to the main patch. Bandwidth of the designed and manufactured antenna is 15% at the center frequency of 26.8GHz. Radiation pattern is measured over wide bandwidth.

  • PDF

Design of Dual-band Microstrip Antenna for ISM Bandwidth using Cross Patch (십자형 패치를 이용한 ISM 대역용 이중대역 마이크로스트립 안테나 설계)

  • 박기동;정문숙;임영석
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.241-245
    • /
    • 2002
  • Dual-band microstrip antenna is designed for industrial-scientific-medical(ISM) band of 2.4㎓ and 5.8㎓ using finite-difference time-domain method(FDTD). Cross Patch fed by aperture in the ground plane of microstrip line is proposed as radiation element of antenna, which is 2 rectangular Patch is overlapped. To design antenna, change of input impedance by aperture and stub length change is examined. And it is investigated that center frequency and -10 ㏈ bandwidth by Length of radiation element and width change. Experimental result about reflection Loss confirmed that agree well with analysis results of FDTD and IE3D, And -3 ㏈ beam width, front to back ratio and gain in frequency 2.43㎓ and 5.79㎓ is presented by measuring radiation Pattern of antenna.

  • PDF