• Title/Summary/Keyword: Microstrip line

Search Result 710, Processing Time 0.028 seconds

Analysis of the Wave Propagation Characteristic for Pulse Signal on Tapered Microstrip Line in Time Domain (테이퍼형 마이크로스트립 전송선로에서 펄스 신호의 시간 영역 전송특성 해석)

  • Kim Girae;Choi Young-Kvu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.40-44
    • /
    • 2006
  • In this paper, the distortion characteristics of an electrical pulse which has a rise/fall time due to the dispersion and the reflection, on nonuniform tapered microstrip lines has investigated in time domain. The transmission characteristics on uniform microstrip lines in time domain had represented already, but the results for the nonuniform tapered microstrip lines not represented yet. We investigated the transmission characteristics for pulse signal on the nonuniform tapered microstrip lines, and the result applied to design of wide band impedance matching circuit in design of MMIC. The voltage and current transfer functions are shown for the tapered line. The dispersion and distortion obtained by using these transfer functions are represented for the nonideal square pulse.

A design of Low Pass Filter using the equivalent circuit of T-junction microstrip line (T-접합선로의 등가회로를 고려한 저역통과 여파기 설계)

  • Dorjsuren, Baatarkhuu;Choi, Heung-Taek;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1180-1185
    • /
    • 2009
  • In this paper, the Low Pass Filter (LPF) using the equivalent circuit of T-junction microstrip line is proposed. And we derived the formulas for lumped-elements of the equivalent circuit of T-junction microstrip line to solve the frequency shift characteristic. T-junction microstrip line is de-embedded by Electromagnetic simulation tool and exact lumped element value of T-junction microstrip line is calculated by the equation of Z-parameter. We can get excellent agreement between lumped-element LPF frequency response and transmission line LPF frequency response.

Analysis of a Coupled Microstrip-Slot Line in the Spectral Domain (스펙트럼 영역에서의 마이크로스트립-슬롯 결합 선로 해석)

  • 이승엽;박한규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.3
    • /
    • pp.553-559
    • /
    • 1994
  • A coupled microstrip-slot line is analyzed using a full wave method in the specral domain. The characteristics of the coupled microstrip-slot line are obtained based on the Galerkin`s method. The characteristics of even mode by microstrip line and odd mode by slot line are calculated respectively. Especially the singularity of basis function is enforced to be considered with respect of modes. Numerical results are compared with available data and shown good agreement.

  • PDF

Analysis of Microstrip Line Structures Using the Entire Domain Function along the Transverse Direction of Microstrip Lines (마이크로스트립 라인의 폭방향 전역함수를 이용한 마이크로스트립 구조의 해석)

  • Kim Jong-Sung
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.8 s.338
    • /
    • pp.41-46
    • /
    • 2005
  • Microstrip open-end and linear resonator are analyzed by method of moment (MoM) taking the entire-domain current distribution, found in literature, along the transverse direction of microstrip line. A transverse correlation function which incorporates permittivity, thickness and width of the line is derived. Numerical examples are investigated and compared with the available other data and methods in order to give the validity of the proposed method. It is found that the proposed method can generate more accurate results than the conventional methods.

Full-Wave Analysis of Microstrip Structures by Time-Domain Finite Difference (TDFD) Method (시간 영역 유한 차분법을 이용한 마이크로스트립 구조의 풀-웨이브 해석)

  • 김동욱;홍성철;이기로
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.7
    • /
    • pp.31-38
    • /
    • 1992
  • In this paper, numerical analysis package using Time-Domain Finite Difference (TDFD) method is developed to solve the initial value problem of Maxwell's equation and applied to several microstrip structures. TDFD allows us to show graphically the evolution of the crosswalk between microstrip lines. Moreover, we can obtain transmission line parameters and scattering parameters through Fourier transform of TDFD results in easy and efficient ways. TDFD is successfully applied to :1) wide band electromagnetic wave propagation along the single microstrip line, 2) crosswalk analysis between two microstrip lines, and 3) three metal line side-coupled filter. Our results show much better agreement with other theoretical experimental results reported in the literature. Thus we expect that TDFD is very useful to designing MMIC(Monolithic Microwave Integrated Circuit).

  • PDF

Design and Experiment of V-LTSA with Microstrip-to-Coplanar Strip Line Feed (Microstrip-to-Coplanar Strip Line 급전구조를 갖는 V-LTSA 의 설계 및 실험)

  • 김혜리;김남현박노준강영진
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.395-398
    • /
    • 1998
  • In this paper, the design, fabrication, and experiments of linearly tapered slot antenna(LTSA) with uniplanar microstrip-to-coplanar strip(CPS) line transitions are presented. The effect of reducing and increasing with taper width G teper longth 1, and opening angle are also mesured at 10 GHz.

  • PDF

A Study on a Capacitively Coupled Microstrip Array Antenna (용량성 결합 마이크로스트립 배열 안테나에 대한 연구)

  • Lee, Jong-Ig;Yeo, Junho;Baek, Woon-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.63-64
    • /
    • 2015
  • In this paper, a microstrip array antenna capacitively coupled to a microstrip line is studied. The array antenna consists of uniformly spaced rectangular microstrip patches arranged close to a feeding microstrip line on a grounded dielectric substrate. The effects of various parameters, such as strip width and length, distance between adjacent patches, gap between strip patches and microstrip feed line, on the antenna performance were examined. By properly adjusting geometrical parameters, the array suitable for a high gain antenna for use in a frequency band centered at 12.5 GHz was designed.

  • PDF

Crosstalk among three microstrip transmission lines (세 개의 마이크로스트립 전송선로간의 크로스톡)

  • 최재연;이상설
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.14-21
    • /
    • 1997
  • The crosstalk among three identical uniform coupled microstrip transmissiom lines is examined. To analyze the crosstalk, the simultaneous equations for the voltage and current waves on each transmission line are induced from the transmission line equation. The capacitance and the inductance of the line to solve the transmission line equation are calculated by the spectral domain analysis and the space domian analysis. There are three quasi-TEM modes is three microstrip transmission lines and the characteristics mode impedences in each mode are almost equal at a weak coupling state. The crosstalk among three identical microstrip transmission lines is calculated varying the frequency from 50MHz to 3GHz.

  • PDF

The Design of microstrip line-probe feeding patch array antenna (마이크로스트립 라인-프로브 급전 패치 배열 안테나의 설계)

  • 박종렬;이윤경;윤현보
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.285-289
    • /
    • 2002
  • In this paper, microstrip line-probe feeding patch array antenna with center frequency 5.8㎓ is designed and manufactured. The microstrip line - probe feeding structure has broadband characteristic and be able to modify the array structure for improving antenna gain. In this result, microstrip line-probe feeding patch array antenna has 17.6% bandwidth and 8㏈i antenna gain, respectively.

  • PDF

Measurement of the planar substrate dielectric constant using a microstrip line (마이크로스트립 선로를 이용한 기판의 유전율 측정)

  • Han, Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2011
  • This paper suggested the fast and easy method of the dielectric constant measurement for planar dielectrics using a microstrip line. The complex permittivity and permeability were presented by the first reflection and transmission coefficient which were derived from the scattering parameters. This method was verified by the measurement of a known planar dielectric using a microstrip line. This method can be applied to the dielectric constant measurement of unknown planar dielectric.