• 제목/요약/키워드: Micropores

검색결과 193건 처리시간 0.029초

하전된 멤브레인 미세기공에서의 계면동전기적 유동에 의한 흐름전위: 비선형 Poisson-Boltzmann 전기장을 갖는 경우 (Electrokinetically Flow-Induced Streaming Potential Across the Charged Membrane Micropores: for the Case of Nonlinear Poisson-Boltzmann Electric Field)

  • Myung-Suk Chun
    • 멤브레인
    • /
    • 제13권1호
    • /
    • pp.37-46
    • /
    • 2003
  • 하전된 멤브레인 미세기공으로 유체가 흐르는 경우는 계면동전기 효과가 작용하게 된다. 비선형 Poisson-Boltzmann 전기장과 흐름에 의해 유발되는 전기장 사이의 정전상호작용을 운동방정식의 외부작용 힘으로 고려하였다. 유한차분법으로 정전위 분포를 우선 산출하고, 이어서 Green 함수로 슬릿형 기공에 대한 Navier-Stokes 식의 해석해를 구하였다. 계면동전기적 유동에 의한 흐름전위를 관련된 물리화학적 인자들의 함수로 유도되는 해석적인 명확한 표현으로 제시하였다. 전기이중층, 표면전위, 그리고 기공벽면의 하전조건의 영향에 따른 유속분포와 흐름전위 변화를 고찰하였다 계산결과, 전기이중층 두께나 표면전위가 증가함에 따라 평균유속은 감소하는 반면에 흐름전위는 증가하였다.

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.

Development of Magnetically Separable Immobilized Lipase by Using Cellulose Derivatives and Their Application in Enantioselective Esterification of Ibuprofen

  • Lee, Go-Woun;Joo, Hong-Il;Kim, Jung-Bae;Lee, Jung-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권3호
    • /
    • pp.465-471
    • /
    • 2008
  • Highly active, stable, and magnetically separable immobilized enzymes were developed using carboxymethyl cellulose (CMC) and diethylaminoethyl cellulose DEAE-C; hereafter designated "DEAE" as supporting materials. Iron oxide nanoparticles penetrated the micropores of the supporting materials, rendering them magnetically separable. Lipase (LP) was immobilized on the surface of the supporting materials by using cross-linked enzyme aggregation (CLEA) by glutaraldehyde. The activity of enzyme aggregates coated on DEAE was approximately 2 times higher than that of enzyme aggregates coated on CMC. This is explained by the fact that enzyme aggregates with amine residues are more efficient than those with carboxyl residues. After a 96-h enantioselective ibuprofen esterification reaction, 6% ibuprofen propyl ester was produced from the racemic mixture of ibuprofen by using DEAE-LP, and 2.8% using CMC-LP.

Preparation and Characterization of Carbon Nanotubes-Based Composite Electrodes for Electric Double Layer Capacitors

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1523-1526
    • /
    • 2012
  • In this work, we prepared activated multi-walled carbon nanotubes/polyacrylonitrile (A-MWCNTs/C) composites by film casting and activation method. Electrochemical properties of the composites were investigated in terms of serving as MWCNTs-based electrode materials for electric double layer capacitors (EDLCs). As a result, the A-MWCNTs/C composites had much higher BET specific surface area, and pore volume, and lower volume ratio of micropores than those of pristine MWCNTs/PAN ones. Furthermore, some functional groups were added on the surface of the A-MWCNTs/C composites. The specific capacitance of the A-MWCNTs/C composites was more than 4.5 times that of the pristine ones at 0.1 V discharging voltage owing to the changes of the structure and surface characteristics of the MWCNTs by activation process.

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

저 기공성 특수 포틀랜드 시멘트에 대한 비교연구 (Comparative Study on a Special Low-Porosity Portland Cement)

  • 장복기
    • 한국세라믹학회지
    • /
    • 제25권5호
    • /
    • pp.532-540
    • /
    • 1988
  • Even the finest cement as having a specific surface area of 6.000~8.500$\textrm{cm}^2$/g (Blaine) is to convert into low-porosity hardened cement paste by the use of appropriate plasticizer. In this study, tests were carried out on such a special cement mix(fineness of 6.000$\textrm{cm}^2$/g, Ca-lignosulfonate plus k2CO3 as plasticizer and W/C=0.25) in comparison with ordinary Portland cement. Owing mainly to the high fineness of the cement powder and the low water-to-cement ratio, the hardened low-porosity cement paste showed a very tight microstructure, the pore texture of which consisted of micropores and wide pores only of small radii. The consequence of such mix was hence that the low-porosity special cement had excellent properties of early-high and very high strengths as compared to ordinary Portland cement. Its volume change when dried in the air or re-wetted, exhibited superor behaviour as well.

  • PDF

유기물 첨가에 따른 다공성 실리카 세라믹스의 제조 및 특성(I) (Synthesis and Characteristics of Porous Silica Ceramics with Organic Additives(I))

  • 신진용;이범재;노재성
    • 한국세라믹학회지
    • /
    • 제35권9호
    • /
    • pp.958-968
    • /
    • 1998
  • Porous silica ceramics were prepared using DCCA(Drying Control Chemical Additives) Such as uncharged polymer(Polyethylene glycol) and protein (Lipase) under H2O/Low-grade TEOS=10 C2H5OH/Low-grade TEOS=1 HC1/Low=grade TEOS=0.01 After Plain which doesn't added DCCA and samples of 11 sorts which varied molecular weight of PEG(Mw=600, 1000, 2000) quantity of Lipase and concentration of wat-er were synthesized gellation time and thermal analysis were investigated. After heat-treated at 600, cry-stal structures analyses of SiO2 polymer and characteristics of pores were investigated. Gellation time was retarded about 2-6 times as compared with plain resulting in addition of DCCA and crystal structures ex-hibited amorphous state. Moreover as increase of water a short gellation time was obtained. The samples added PEG showed increase of specific surface areas up to 20-40% and had micropores while those of Lipase were decreased about 90% and showed broad pore size distribution.

  • PDF

소결 알루미나의 금속접합 및 접합강도에 관한 연구 (Mo-Mn Metallizing on Sintered Alumina and It합s Bond Strength)

  • 이준;김영태;장성도;손용배
    • 한국세라믹학회지
    • /
    • 제22권6호
    • /
    • pp.58-70
    • /
    • 1985
  • The bond strength of metal to ceramic sealing in Mo-Mn metallizing was investigated by examining the effects of flux composition in alumina ceramics particle size of molybdenum metal powder wet hydrogen atmosphere and temperature in metallizing. The maximum bond strength was obtained when the glass phase filled almost all the microstructural cavities around the interfacial area with few micropores. Such a favorable microstrcutre waas formed and maximum bond strength was observed between 130$0^{\circ}C$. Also the metal to ceramic bond strength was increased using finer molybdenum metal powder than coarse powder. When content of $SiO_2$ in the flux of alumina ceramics was constant metal to ceramic bond strength was improved with increasing the ratio of CaO to MgO in the flux.

  • PDF

주조된 AI 합금의 기계적 성질에 미치는 HIP의 영향 (The Effect of Hot Isostatic Pressing on Mechanical Properties of Cast Aluminum Alloy)

  • 김기태;양훈철;최재윤
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.461-470
    • /
    • 2002
  • The present paper investigates the effect of hot isostatic pressing (HIPing) on mechanical properties, e.g., tensile strength, ductility and impact absorption energy of sand and die casted aluminum alloys. After HIPing at various temperatures and pressure conditions, uniaxial tensile test and Izod impact test of the samples were carried out. The experimental results showed improvements in uniaxial tensile strength, elongation and Izod impact toughness of sand casted aluminum alloy, while deterioration of a tensile strength fur die casted aluminum alloy. The effect of HIPing for microstructure of the cast aluminum alloy was also investigated.

$H_2O$ 증착법에 의한 알루미나 시멘트 경화체의 기공구조 연구 (A Study on the Pore Structure of Hardened Alumina Cement Pste by Water Vapor Sorption)

  • 임용무;장복기
    • 한국세라믹학회지
    • /
    • 제30권4호
    • /
    • pp.273-278
    • /
    • 1993
  • Using water vapor (de)sorption isotherm, pore structure analyses were performed for hardened cement pastes by a combination of the "MP-method" for the micropores and the "corrected modelless method" for the wide pores. This work was carried out to investigate the pore structure and to understand the microstructural basis of alumina cement developing much higher strength than Portland cement. Alumina cement shows extremely low microporosity and its wide pores are also composed mainlyof pores with very small radii. And the pore structure analysis results are consistent with the high strength property of alumina cement.y of alumina cement.

  • PDF