• 제목/요약/키워드: Micropatterns

검색결과 37건 처리시간 0.025초

Quantitative Analysis of Growth of Cells on Physicochemically Modified Surfaces

  • Chandra, Prakash;Kim, Jihee;Rhee, Seog Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.524-530
    • /
    • 2013
  • In this study, we describe the most expected behavior of cells on the modified surface and the correlation between the modified substrates and the response of cells. The physicochemical characteristics of substrates played an essential role in the adhesion and proliferation of cells. Glass and polymer substrates were modified using air plasma oxidation, and the surfaces were coated with self-assembled monolayer molecules of silanes. The PDMS substrates embedded with parallel micropatterns were used for evaluation of the effect of topologically modified substrate on cellular behaviour. BALB/3T3 fibroblast cells were cultured on different surfaces with distinct wettability and topology, and the growth rates and morphological change of cells were analyzed. Finally, we found the optimum conditions for the adhesion and proliferation of cells on the modified surface. This study will provide insight into the cell-surface interaction and contribute to tissue engineering applications.

광변조기용 CPW 진행파형 전극 마이크로파 전송특성 (Microwave transmission characteristics of CPW traveling-wave electrode for light intensity modulator)

  • 김성구;윤형도;윤대원;유용택
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.51-58
    • /
    • 1996
  • This report describes thick traveling-wave electrode formation and microwave transmission characteristics of the fabricated electrodes. Effective refractive indices of the microwave in the 5 micron CPW type traveling-wave electrodes is around 2.45 according to the results of time domain S parameter measurements. The bandwidth of the electrodes is about 10 GHz and could be extended to 15 GHz through optimization of the process. The developed process technique that enables plating of micropatterns upto 20 micron can be applied to broadband optical intensity modulators.

  • PDF

Fabrication of Poly(diallyldimethylammonium chloride) - Patterned Substrates for Patterning of Single Strand DNA Using Ion Implantation

  • Ahn, Mi-Young;Hwang, In-Tae;Jung, Chan-Hee;Choi, Jae-Hak;Nho, Young-Chang
    • 방사선산업학회지
    • /
    • 제5권3호
    • /
    • pp.243-247
    • /
    • 2011
  • In this study, a convenient method for the selective immobilization of single strand DNA (ssDNA) on a polymer surface was described. A positively charged polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA), was spin-coated on a tissue culture petridish and the micropatterns of the PDDA were formed by selective ion implantation through a pattern mask. The surface property of the implanted PDDA was investigated by using a surface profiler and FT-IR spectrometer. Cy3-labeled ssDNA was selectively immobilized on the PDDA patterns through ionic interaction and thus, well-defined ssDNA patterns were obtained.

비정질 합금의 마이크로 패턴 레이저 가공 (Micro-pattern Fabrication of Amorphous Alloy by Laser Beam Machining)

  • 김한;박종욱
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.77-83
    • /
    • 2022
  • Amorphous alloys exhibit excellent mechanical properties; therefore, application technology development is being attempted in various fields. However, industrial use of application technology is limited owing to the limitations in fabrication. In this study, micropattern fabrication of an amorphous alloy was conducted using laser beam machining. Although microhole fabrication is possible without the deformation of the amorphous phase through nanosecond pulsed laser beam machining, there are limitations in the generation of recast layers and spatters. In cover plate laser beam machining (c-LBM), a cover plate is used to reduce the thermal deformation and processing area. Therefore, it is possible to fabricate holes at the level of several micrometers. In this study, it was confirmed that recast layers are hardly generated in c-LBM. Furthermore, square-shaped micropatterns were successfully fabricated using c-LBM.

Biosurface Organic Chemistry: Interfacial Chemical Reactions for Applications to Nanobiotechnology and Biomedical Sciences

  • Chi, Young-Shik;Lee, Jung-Kyu K.;Lee, Kyung-Bok;Kim, Dong-Jin;Choi, In-Sung S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권3호
    • /
    • pp.361-370
    • /
    • 2005
  • In this review, the field of biosurface organic chemistry is defined and some examples are presented. The aim of biosurface organic chemistry, composed of surface organic chemistry, bioconjugation, and micro- and nanofabrication, is to control the interfaces between biological and non-biological systems at the molecular level. Biosurface organic chemistry has evolved into the stage, where the lateral and vertical control of chemical compositions is achievable with recent developments of nanoscience and nanotechnology. Some new findings in the field are discussed in consideration of their applicability to nanobiotechnology and biomedical sciences.

연속적 스캐닝 방법을 이용한 이광자 광중합 공정의 제작 속도 및 정밀도 개선에 관한 연구 (Continuous Scanning Method for Improvement of Precision and Fabrication Efficiency of Two-Photon Stereolithography)

  • 임태우;손용;양동열;공홍진;이광섭;박상후
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.396-401
    • /
    • 2008
  • Minimization of processing time in two-photon stereolithography (TPS) has been one of important issues. Generally, a voxel scanning method (VSM) has been used in TPS because the method is very profitable for the stable fabrication irrespective of jittering and response time of scanning equipments such as a stage and a galvano-scanner. However, supplementary processing time due to the on/off control of a shutter for the generation of each voxel is required inevitably in VSM; by this reason, much processing time takes to fabricate largescale micropatterns and three-dimensional patterns. In this work, a continuous scanning method (CSM), generating patterns by movement of beam focus with a constant speed, is proposed for the improvements of scanning speed and precision in TPS. Some line patterns are fabricated by each scanning method to demonstrate the usefulness of CSM with viewpoints of scanning speed and precision.

Ablation of Polypropylene for Breathable Packaging Films

  • Sohn, Ik-Bu;Noh, Young-Chul;Choi, Sung-Chul;Ko, Do-Kyeong;Lee, Jong-Min;Choi, Young-Jin
    • 한국레이저가공학회지
    • /
    • 제9권3호
    • /
    • pp.15-21
    • /
    • 2006
  • A Polypropylene (PP) film was ablated using a femtosecond laser with a center wavelength of 785 nm, a pulse width of 184 fs and a repetition rate of 1 kHz. Increments of both pulse energy and the shot number of pulses lead to co-occurrence of photochemical and thermal effect, demonstrated by the spatial expansion of rim on the surface of PP. The shapes of the laser-ablated PP films were imaged by a scanning electron microscope (SEM) and measured a 3D optical measurement system (NanoFocus). And, the oxygen transmission rate (ORT) of periodically laser-ablated PP film were characterized by oxygen permeability tester for modified atmosphere packaging (MAP) of fresh fruit and vegetable. Our results demonstrate that femtosecond pulsed laser is efficient tools for breathable packaging films in modifying the flow of air and gas into and out of a fresh produce container, where the micropatterns are specifically tailored in size, location and number which are easily controlled by laser pulse energy and pulse patterning system.

  • PDF

Poly(dimethylsiloxane) 미세 구조물의 신속한 기하학적 패터닝 (Rapid Topological Patterning of Poly(dimethylsiloxane) Microstructure)

  • 김보열;송환문;손영아;이창수
    • 한국염색가공학회지
    • /
    • 제20권1호
    • /
    • pp.8-15
    • /
    • 2008
  • We presented the modified decal-transfer lithography (DTL) and light stamping lithography (LSL) as new powerful methods to generate patterns of poly(dimethylsiloxane) (PDMS) on the substrate. The microstructures of PDMS fabricated by covalent binding between PDMS and substrate had played as barrier to locally control wettability. The transfer mechanism of PDMS is cohesive mechanical failure (CMF) in DTL method. In the LSL method, the features of patterned PDMS are physically torn and transferred onto a substrate via UV-induced surface reaction that results in bonding between PDMS and substrate. Additionally we have exploited to generate the patterning of rhodamine B and quantum dots (QDs), which was accomplished by hydrophobic interaction between dyes and PDMS micropatterns. The topological analysis of micropatterning of PDMS were performed by atomic force microscopy (AFM), and the patterning of rhodamine B and quantum dots was clearly shown by optical and fluorescence microscope. Furthermore, it could be applied to surface guided flow patterns in microfluidic device because of control of surface wettability. The advantages of these methods are simple process, rapid transfer of PDMS, modulation of surface wettability, and control of various pattern size and shape. It may be applied to the fabrication of chemical sensor, display units, and microfluidic devices.

A One-Component Negative Photoresist Based on an Epoxy Terpolymer Containing Oxime-Urethane Groups as a Photobase Generator

  • Chae, Kyu-Ho;Park, Jin-Hee
    • Macromolecular Research
    • /
    • 제12권4호
    • /
    • pp.352-358
    • /
    • 2004
  • For their application as one-component photoresists, we prepared epoxy terpolymers containing oxime-urethane and benzophenone groups by the radical polymerization of glycidyl methacrylate (GMA), metha-cryloxyethyl benzophenoneoxime urethane (MBU), and N-(4-benzoyl)phenylmaleimide (BPMI). The terpolymer composition was optimized to provide the most photosensitive photoresist. The photo-decomposition reaction of the oxime-urethane groups in the terpolymer was monitored by UV absorption spectroscopy, and the photo-crosslinking reaction of the epoxy terpolymer was observed by measuring the normalized thickness. The photosensitivity of the epoxy terpolymer increased as the amount of BPMI and MBU units increased up to 16 and 24 mol%, respectively. Among the terpolymers we prepared, terpolymer T-II(contents of GMA, MBU, BPMI are 75, 19, 6.1 mole%, respectively) exhibited the highest photosensitivity ( $D_{c}$ $^{0.5}$ = 430 mJ/$\textrm{cm}^2$) and had a moderate contrast (${\gamma}$$^{p}$ = 1.23). Negative-tone micropatterns having a line width of ca. 10 ${\mu}{\textrm}{m}$ were obtained by developing the system with chloroform.m.

Thermally Stable Photoreactive Polymers as a Color Filter Resist Bearing Acrylate and Cinnamate Double Bonds

  • Cho, Seung-Hyun;Lim, Hyun-Soon;Jeon, Byung-Kuk;Ko, Jung-Min;Lee, Jun-Young;Ki, Whan-Gun
    • Macromolecular Research
    • /
    • 제16권1호
    • /
    • pp.31-35
    • /
    • 2008
  • Photoreactive polymers as a color filter resist containing both photoreactive acrylate and cinnamate double bonds were synthesized usin two step reactions. The chemical structures of the synthesized polymers were confirmed by $^1H$-NMR and FT-IR spectroscopy. The photoreactive polymers were quite soluble in most common organic solvents and produced excellent quality thin films by spin-coating. The photocuring kinetics of the acrylate and cinnamate double bonds were examined by FT-IR and UV- Vis spectroscopy, which confirmed the excellent photoreactivity of both the acrylate and cinnamate double bonds in the polymers. Upon UV irradiation, photocuring was almost completed within approximately 5 min, irrespective of the type of the prepolymers. The polymers also exhibited superior thermal stability, showing little change in transmittance in the visible region even after heating to $250^{\circ}C$ for one hour. Photolithographic micropatterns could be obtained with a resolution of a few microns.