DOI QR코드

DOI QR Code

Rapid Topological Patterning of Poly(dimethylsiloxane) Microstructure

Poly(dimethylsiloxane) 미세 구조물의 신속한 기하학적 패터닝

  • Kim, Bo-Yeol (Department of Chemical Engineering, Chungnam National University) ;
  • Song, Hwan-Moon (Department of Chemical Engineering, Chungnam National University) ;
  • Son, Young-A (Department of Textile Engineering, Chungnam National University) ;
  • Lee, Chang-Soo (Department of Chemical Engineering, Chungnam National University)
  • 김보열 (충남대학교, 바이오응용화학부, 화학공학) ;
  • 송환문 (충남대학교, 바이오응용화학부, 화학공학) ;
  • 손영아 (충남대학교, 바이오응용화학부, 유기섬유시스템) ;
  • 이창수 (충남대학교, 바이오응용화학부, 화학공학)
  • Published : 2008.02.27

Abstract

We presented the modified decal-transfer lithography (DTL) and light stamping lithography (LSL) as new powerful methods to generate patterns of poly(dimethylsiloxane) (PDMS) on the substrate. The microstructures of PDMS fabricated by covalent binding between PDMS and substrate had played as barrier to locally control wettability. The transfer mechanism of PDMS is cohesive mechanical failure (CMF) in DTL method. In the LSL method, the features of patterned PDMS are physically torn and transferred onto a substrate via UV-induced surface reaction that results in bonding between PDMS and substrate. Additionally we have exploited to generate the patterning of rhodamine B and quantum dots (QDs), which was accomplished by hydrophobic interaction between dyes and PDMS micropatterns. The topological analysis of micropatterning of PDMS were performed by atomic force microscopy (AFM), and the patterning of rhodamine B and quantum dots was clearly shown by optical and fluorescence microscope. Furthermore, it could be applied to surface guided flow patterns in microfluidic device because of control of surface wettability. The advantages of these methods are simple process, rapid transfer of PDMS, modulation of surface wettability, and control of various pattern size and shape. It may be applied to the fabrication of chemical sensor, display units, and microfluidic devices.

Keywords

References

  1. Wallraff G. M., Hinsberg W. D., Lithographic Imaging Techniques for the Formation of Nanoscopic Features, Chem. Rev., 99, 1801-1822 (1999) https://doi.org/10.1021/cr980003i
  2. Yao J. J., RF MEMS from a device perspective, J. Micromech. Microeng., 10, R9-R38(2000) https://doi.org/10.1088/0960-1317/10/4/201
  3. Walker J. A., The future of MEMS in telecommunications networks, J. Micromech. Microeng., 10, R1-R7(2000) https://doi.org/10.1088/0960-1317/10/3/201
  4. Beebe D. J., Moore J. S., Yu Q., Liu R. H., Kraft M. L., Jo B., Devadoss C., Microfluidic tectonics: A comprehensive construction platform for microfluidic systems, Proc. Natl. Acad. Sci., 97, 13488-13493(2000) https://doi.org/10.1073/pnas.250273097
  5. Beebe D. J., MensingG. A., Walker G. M., Physics and applications of microfluidics in biology, Annu. Rev. Biomed. Eng., 4, 261-286(2002) https://doi.org/10.1146/annurev.bioeng.4.112601.125916
  6. Xia Y., Rogers J. A., Paul K. E., Whitesides G. M., Unconventional Methods for Fabricating and Patterning Nanostructures, Chem. Rev., 99, 1823-1848(1999) https://doi.org/10.1021/cr980002q
  7. Xia. Y., Whitesides G. M., Soft Lithography, Angew. Chem. Int. Ed. Engl., 37, 550-575(1998) https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<550::AID-ANIE550>3.0.CO;2-G
  8. Kane, R. S., S. Takayama, E. Ostuni, D. E. Ingber, Whitesides G. M., Patterning Proteinsand Cells using Soft Lithography, Biomaterials., 20, 2363-2376(1999) https://doi.org/10.1016/S0142-9612(99)00165-9
  9. Quist, A. P., E. Pavlovic, S. Oscarsson., Recent Advances in Microcontact Printing, Analytical and Bioanalytical Chemistry., 381, 591-600(2005) https://doi.org/10.1007/s00216-004-2847-z
  10. Kumar A., Biebuyck H. A., Abbott N. L., Whitesides G. M., The use of self-assembled monolayers and a selective etch to generate patterned gold features, J. Am. Chem. Soc., 114, 9188-9189(1992) https://doi.org/10.1021/ja00049a061
  11. Kumar A., Whitesides G. M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching, Appl. Phys. Lett., 63, 2002-2004(1993) https://doi.org/10.1063/1.110628
  12. Kumar A., Biebuyck H. A., Whitesides G. M., Patterning Self-Assembled Monolayers: Applications in Materials Science, Langmuir, 10, 1498-1511(1994) https://doi.org/10.1021/la00017a030
  13. Childs W. R., Nuzzo R. G., Decal Transfer Microlithography: A New Soft-Lithographic Patterning Method, J. Am. Chem. Soc., 124, 13583-13596(2002) https://doi.org/10.1021/ja020942z
  14. Childs W. R., Nuzzo R. G., Patterning of Thin-Film Microstructures on Non-Planar Surfaces Using Decal Transfer Lithography, Adv. Mater., 16, 1323-1327(2004) https://doi.org/10.1002/adma.200400592
  15. Childs W. R., Nuzzo R. G., Large-Area Patterning of Coinage-Metal Thin Film Using Decal Transfer Lithography, Langmuir, 21, 195-202(2005) https://doi.org/10.1021/la047884a
  16. K. S. Park, E. K. Seo, Y. R. Do, K. Kim, M. M. Sung., Light Stamping Lithography: Microcontact Printing without Inks, J. Am. Chem. Soc., 128, 858-865 (2006) https://doi.org/10.1021/ja055377p
  17. L. Qu, Z. A. Peng, X. Peng., Alternative Routes toward High Quality CdSe Nanocrystals, Nano Lett., 1, 333-337(2001) https://doi.org/10.1021/nl0155532
  18. Z. A. Peng, X. Peng., Formation of High- Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor, J. Am. Chem. Soc., 123, 183-184(2001) https://doi.org/10.1021/ja003633m
  19. H. W. Shim, J. H. Lee, C. S. Lee, Microcontact printing of bacteria using hybrid agarose gel stamp, Korean J. Biotechnol. Bioeng., 21, 325-330 (2006)
  20. Z. Zheng, O. Azzaroni, F. Zhou, Wilhelm T.S. Huck., Topography Printing to Locally Control Wettability, J. Am. Chem. Soc., 128, 7730-7731 (2006) https://doi.org/10.1021/ja061636e