• Title/Summary/Keyword: Micromorphometric change

Search Result 7, Processing Time 0.026 seconds

The Micromorphometric change of the GBA and RBM implant surface conditioned with tetracycline-HCI (염산테트라싸이클린 적용시간에 따른 GBA 및 RBM 임프란트 표면변화)

  • Park, Kang-Hun;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.705-716
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-HCl on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, GBA surface and RBM surface were utilized. Implant surface was rubbed with 50mg/ml tetracycline-HCl solution for ${\frac{1}{2}}$min. 1min. $1{\frac{1}{2}}$min. 2min. and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follow. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two group. 2. In GBA surfaces, control group exhibit many porous depression, and each depression were divided by strict border. Experimental group applied with tetracycline-HCl for 2min. were similar with control group. But when applied for $2{\frac{1}{2}}$min. surface alteration and border breakdown started, resulting enlargement of the porous depression. 3. In REM surface, control group exhibit rough, uneven surface with crater-like depression can be found. The surface alteration started when tetracycline-HCl was applied for 30sec. resulting breakdown of the crater-like depression. Depression became larger as applying time increased.

Micromorphometric change of implant surface conditioned with tetracycline-HCI : $FBR^{(R)}$ and CeliNest surface (표면처리 시간에 따른 임프란트 미세구조의 변화 : $FBR^{(R)}$과 CellNest 표면 임프란트)

  • Chang, Dong-Wook;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.717-729
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-BCL on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, double coated $FBR^{(R)}$ surface and oxidized CellNest surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-BCL solution for ${\frac{1}{2}}$, 1, $1{\frac{1}{2}}$, 2 and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. The double coated $FBR^{(R)}$ surfaces showed fine crystalline structures. The roughness of surfaces conditioned with tetracycline-BCL was lessened relative to the application time. 3. The oxidized CellNest surfaces showed the porous structures. The surface conditioning with tetracycline-BCI influenced on its micro-morphology. In conclusion, the detoxification of the affected implant surface with $50mg/m{\ell}$ tetracycline-BCL should be applied respectively with different time according to various implant surfaces.

Micromorphometric change of implant surface conditioned with Tetracycline-HCl : HA and Etched surface (염산테트라싸이클린의 적용시간에 따른 특수 가공된 임프란트 표면 변화)

  • Han, Ju-Young;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.731-744
    • /
    • 2006
  • The present study was performed to evaluate the effect of tetracycline-HCl on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface, HA-coated surface and dual acid etched surface were utilized. Implant surface was rubbed with $50mg/m{\ell}$ tetracycline-HCL solution for ${\frac{1}{2}}$min., 1min., $1{\frac{1}{2}}$min., 2min., and $2{\frac{1}{2}}$min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In HA-coated surfaces, round particles were deposited irregularly. The roughness of surfaces conditioned with tetracycline-HCL was lessened and the cracks were increased relative to the application time. 3. The etched surfaces showed the honey comb structures. The surface conditioning with tetracycline-HCI didn't influence on its micro-morphology. In conclusion, the detoxification with $50mg/m{\ell}$ tetracycline-HCI must be applied respectively with different time according to various implant surfaces.

Micromorphometric change of implant surface conditioned with tetracycline-HCI;HA and oxidized surface (표면처리 시간에 따른 임플란트 미세구조의 변화;HA와 양극산화 표면 임플란트)

  • An, Sang-Ho;Park, Joon-Bong;Kwon, Young-Hyuk;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.891-905
    • /
    • 2005
  • The present study was performed to evaluate the effect of tetracycline-HCL on the change of implant surface microstructure according to application time. Implant with pure titanium machined surface. HA-coated surface and TiUniteTM surface were utilized. Implant surface was rubbed with 50mg/ml tetracycline-HCL solution for $\frac{1}{2}min.$, 1min., $1\frac{1}{2}min.$, 2min., and $2\frac{1}{2}min.$ respectively in the test group. Then, specimens were processed for scanning electron microscopic observation. The results of this study were as follows. 1. Both test and control group showed a few shallow grooves and ridges in pure titanium machined surface implants. There were not significant differences between two groups. 2. In HA-coated surfaces, round particles were deposited irregularly. The roughness of surfaces conditioned with tetracycline-HCL was lessened and the cracks were increased relative to the application time. 3. The anodic oxidized surfaces showed the craterous structures. The surface conditioning with tetracycline-HCl didn't influence on its micro-morphology. In conclusion, the detoxification with 50mg/ml tetracycline-HCL must be applied respectively with different time according to various implant surfaces.

Micromorphometric change of implant surface conditioned with tetracycline-HCI;Hydroxyapatite surface (염산 테트라싸이클린이 HA 임플란트 표면구조에 미치는 영향)

  • Yang, Dong-Il;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek;Chung, Jong-Hyuk
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.779-789
    • /
    • 2007
  • The present study was performed to evaluate the effect of Tetracycline-HCI on the change of implant surface microstructure according to application time. Implant with hydroxyapatite surface was were utilized. Implant surface was rubbed with 50mg/ml Tetracycline-HCI solution and sterilized saline for ${\frac{1}{2}}min.$, 1min., $1{\frac{1}{2}}min.$, 2min., $2{\frac{1}{2}}min.$, and 3min. respectively in the test group. Then, specimens were processed for scanning electron microscopic observation and measured surface roughness by optical interferometer. The results of this study were as follows. 1. Hydroxyapatite surface showed that round particles were deposited irregularly. 2. The roughness of surfaces conditioned with Tetracycline-HCI and saline was lessened and the cracks were increased relative to the application time. In conclusion, the detoxification with 50mg/ml Tetracycline-HCI must be applied respectively with appropriate time according to hydroxyapatite implant surfaces.

Micromorphometric Influence of Anodic oxidation surface implant conditioned with tetracycline-HCI (양극 산화 임플란트 표면 구조에 대한 염산 테트라싸이클린의 영향)

  • Lim, Jeong-Taek;Chung, Jong-Hyuk;Kwon, Young-Hyuk;Park, Joon-Bong;Herr, Yeek
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.4
    • /
    • pp.767-777
    • /
    • 2007
  • The present study was performed to evaluate the effect of Tetracycline-HCI on the change of implant surface microstructure according to application time. Anodic oxidation surface were utilized. Implant surface was rubbed with 50mg/ml Tetracycline-HCI solution for ${\frac{1}{2}}min.$, 1min., $1{\frac{1}{2}}min.$, 2min., $2{\frac{1}{2}}min.$, and 3min. respectively in the test group. Then, specimens were processed for Ra Value test and scanning electron microscopic observation. The results of this study were as follows. 1. The anodic oxidation surface roughness tests don't show significant difference on conditioning with saline and Tetracycline-HCI. 2. The anodic oxidized surfaces showed the craterous structures. The surface conditioning with Tetracycline-HCI didn't influence on its micro-morphology. In conclusion, Anodic oxidation implant surface is stable to detoxificate with 50mg/ml Tetracycline-HCI of implant surface.

Micromorphometric change of Ti$O_2$ blast implant surface conditioned with tetracycline-HCI (산화 티타늄 블라스팅 임프란트 표면구조에 대한 염산 테트라싸이클린의 영향)

  • Lee, Jung-Min;Herr, Yeek;Kwon, Young-Hyuk;Park, Joon-Bong;Chung, Jong-Hyuk;Heo, Seong-Joo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.3
    • /
    • pp.599-611
    • /
    • 2007
  • The present study was performed to evaluate the surface roughness and effect of Tetracycline-HCI on the change of implant surface microstructure according to application time. Ti$O_2$ surface Implant was utilized. Implant surface was rubbed with 50mg/ml Tetracycline-HCI solution for 0.5min, 1min, 1.5min, 2min, 2.5min and 3min respectively in the Tetracycline-HCI group. Then, specimens were measured surface roughness and processed for scanning electron microscopic observation. The results of this study were as follows. 1. Ti$O_2$ blast implant surface showed increased surface roughness 1.5 minute after treatment with Tetracycline-HCI. But, there were not significant differences in saline group after treatment. 2. Tetracycline-HCI group showed changed surface micro-morphology in SEM after 1.5 minute. There were not significant differences in saline group after treatment. 3. Between Tetracycline-HCI group and saline group, there were difference in surface roughness change and SEM micro-morphology. Tetracycline-HCI have influence on Ti$O_2$ blast implant surface. In conclusion, the detoxification with 50mg/ml Tetracycline-HCI must be applied respectively with different time according to various implant surfaces.