• Title/Summary/Keyword: Micromolding in capillaries

Search Result 4, Processing Time 0.025 seconds

A Study on Single Cell Polarized Signals Using Polydimethylsiloxane-based Micropatterned Channel System (폴리디메틸실록산 기반 마이크로패턴 채널 시스템을 이용한 단일 세포의 극성 신호에 관한 연구)

  • Suh, Jung-Soo;Lee, Chanbin;Pan, Yijia;Wang, Yingxiao;Jung, Youngmi;Kim, Tae-Jin
    • Korean Chemical Engineering Research
    • /
    • v.58 no.1
    • /
    • pp.122-126
    • /
    • 2020
  • In this study, we produced the micropatterned channel system using polydimethylsiloxane (PDMS) and micromolding in capillaries (MIMIC) technology and evaluated cellular polarity signals through high-resolved imaging at the single-cell level. In cells treated with platelet-derived growth factor (PDGF), three types of key signals in cell migration; phosphoinositide 3-kinase (PI3 K), Rac, and Actin, were strongly activated in the front area compared to the rear region, whereas myosin light chain (MLC) showed no notable activity in the front and rear areas. Our results will, therefore, provide important information and methodology for studying the correlation between cell polarity signals and cell migration under the newly defined microenvironment.

Surface modification method for controlling liquid crystal alignment

  • Kim, Hak-Rin;Song, June-Yong;Bae, Kwang-Soo;Kim, Jae-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.299-302
    • /
    • 2007
  • We propose a soft-lithographic patterning method for producing a multi-domain liquid crystal (LC) alignment. The LC alignment polyimide layers are periodically patterned in the pixel boundaries by a micromolding-in-capillaries method. In our structure, the initially homeotropic LC orientations in the pixel areas are changed to axially symmetric LC domains due to the symmetric pretilt of LC molecules on the pixel boundaries.

  • PDF

Fabrication of Micron-sized Organic Field Effect Transistors (마이크로미터 크기의 유기 전계 효과 트랜지스터 제작)

  • Park, Sung-Chan;Huh, Jung-Hwan;Kim, Gyu-Tae;Ha, Jeong-Sook
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this study, we report on the novel lithographic patterning method to fabricate organic thin film field effect transistors (OTFTs) based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30 nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce $Al_2O_3$ film grown via atomic layer deposition method onto pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated micron sized pentacene FETs and measured their electrical characteristics.

Fabrication of sub-micron sized organic field effect transistors

  • Park, Seong-Chan;Heo, Jeong-Hwan;Kim, Gyu-Tae;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.84-84
    • /
    • 2010
  • In this study, we report on the novel lithographic patterning method to fabricate organic-semiconductor devices based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries (MIMIC) and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce the atomic layer deposition of $Al_2O_3$ film on pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated sub-micron sized pentacene FETs and measured their electrical characteristics.

  • PDF