• Title/Summary/Keyword: Micromechanics

Search Result 147, Processing Time 0.024 seconds

A Micromechanics-based Elastic Model for Particle-Reinforced Composites Containing Slightly Weakened Interfaces (미소한 손상경계면을 갖는 입자강화 복합재료의 미세역학 탄성 모델에 관한 연구)

  • Lee, Haeng-Ki;Pyo, Suk-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.441-444
    • /
    • 2007
  • This paper presents a part of micormechanics-based elastic modeling (Lee and Pyo, 2007) of particle-reinforced composites containing slightly weakened interfaces. The Eshelby's tensor for a damaged ellipsoidal inclusion to model particles with slightly weakened interfaces is incorporated into a micormechanical formulation by Ju and Chen (1994). A damage model in accordance with the Weibull's probabilistic function is also developed to simulate the progression of weakened interface in the composites.

  • PDF

An investigation of worn DLC coatings using atomic force microscopy (DLC 코팅 마모면에 대한 원자력 현미경을 이용한 고찰)

  • ;;S.A.Chizhik
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.299-304
    • /
    • 2001
  • Tribofilms formed on worn surface protect the DLC coating surface and decrease the friction coefficient. However it is very difficult to evaluate their micromechanical properties due to their small thickness, inhomogeneity and discontinuity. The phase contrast images in tapping mode atomic force microscopy allow an estimation of inhomogeneity in micromechanical properties of the sample surface. The purpose of this investigation is to demonstrate how the phase contrast images contribute to the characterization of thin tribofilms.

  • PDF

Geometry Effect of Multi-Walled Carbon Nanotube on Elastic Modulus of Polymer Composites (다중벽 탄소나노튜브의 형상인자에 따른 고분자 복합재료의 탄성계수에 관한 연구)

  • Suhr, Jonghwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.89-94
    • /
    • 2014
  • The high Young's modulus and tensile strength of carbon nanotubes has attracted great attention from the research community given the potential for developing super-strong, super-stiff composites with carbon nanotube reinforcements. Over the decades, the strength and stiffness of carbon nanotube-reinforced polymer nanocomposites have been researched extensively. However, unfortunately, such strong composite materials have not been developed yet. It has been reported that the efficiency of load transfer in such systems is critically dependent on the quality of adhesion between the nanotubes and the polymer chains. In addition, the waviness and orientation of the nanotubes embedded in a matrix reduce the reinforcement effectiveness. In this study, we carried out performed micromechanics-based numerical modeling and analysis by varying the geometry of carbon nanotubes including their aspect ratio, orientation, and waviness. The results of this analysis allow for a better understanding of the load transfer capabilities of carbon nanotube-reinforced polymer composites.

Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate

  • Jia, Anqiang;Liu, Haiyan;Ren, Lijian;Yun, Yingxia;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.111-127
    • /
    • 2020
  • The goal of this study is to fill this apparent gap in the area about investigating the effect of porosity distributions on vibrational behavior of FG sectorial plates resting on a two-parameter elastic foundation. The response of the elastic medium is formulated by the Winkler/Pasternak model. The internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The model is proposed with material parameters varying in the thickness of plate to achieve graded distributions in both porosity and nanofillers. The elastic modulus of the nanocomposite is obtained by using Halpin-Tsai micromechanics model. The annular sector plate is assumed to be simply supported in the radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, clamped and free. The 2-D differential quadrature method as an efficient and accurate numerical approach is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution. Results show that for better understanding of mechanical behavior of nanocomposite plates, it is crucial to consider porosities inside the material structure.

Numerical Analysis for the Characteristic Investigation of Homogenization Techniques Used for Equivalent Material Properties of Functionally Graded Material (기능경사 소재 등가 물성치 예측을 위한 균질화 기법의 특성분석을 위한 수치해석)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Shin, Dae-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Graded layers in which two different constituent particles are mixed are inserted into functionally graded material such that the volume fractions of constituent particles vary continuously and functionally over the entire material domain. The material properties of this dual-phase graded region, which is essential for the numerical analysis of the thermo-mechanical behavior of FGM, have been predicted by traditional homogenization methods. But, these methods are limited to predict the global equivalent material properties of FGMs because the detailed geometry information such as the particel shape and the dispersion structure is not considered. In this context, this study intends to investigate the characteristics of these homogenization methods through the finite element analysis utilizing the discrete micromechanics models of the graded layer, for various volume fractions and external loading conditions.

Vibration analysis of FG porous rectangular plates reinforced by graphene platelets

  • Zhou, Changlin;Zhang, Zhongxian;Zhang, Ji;Fang, Yuan;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.215-226
    • /
    • 2020
  • The aim of this study is to investigate free vibration of functionally graded porous nanocomposite rectangular plates where the internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. The GPL-reinforced plate is modeled using a semi-analytic approach composed of generalized differential quadrature method (GDQM) and series solution adopted to solve the equations of motion. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. New results reveal the importance of porosity coefficient, porosity distribution, graphene platelets (GPLs) distribution, geometrical and boundary conditions on vibration behavior of porous nanocomposite plates. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution.

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites (분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구)

  • Ki, Yelim;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 2018
  • In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

Elastoplastic Behavior and Progressive Damage of Circular Fiber-Reinforced Composites (원형섬유강화 복합재료의 탄소성거동 및 점진적 손상)

  • Lee, Haeng Ki;Kim, Bong Rae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.115-123
    • /
    • 2008
  • The performance prediction of fiber-reinforced composites has attracted engineer's attention in many fields, and the various theoretical and numerical methods have been proposed to predict the behavior of the fiber-reinforced composites. An evolutionary damage model for progressive interfacial debonding between circular fibers and the matrix is newly incorporated into the micromechanics-based elastoplastic model proposed by Ju and Zhang (2001) in this framework. Using the proposed model, a series of numerical simulations are conducted to illustrate the elastoplastic behavior and evolutionary damage of the framework. Furthermore, the influence of the evolutionary interfacial debonding on the behavior of the composites is investigated by comparing it with the result of a stationary damage model.

Micromechanics-based evaluation of diffusivity and permeability of concrete containing silica fume (실리카퓸 혼입 콘크리트의 확산계수 및 투수계수의 미시학적 추정)

  • 장종철;송하원;변근주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.531-536
    • /
    • 2002
  • Silica fume influences concrete diffusivity and permeability as well as strength by densifying the microstructure of the interfacial transition zone (ITZ) of high strength concrete, by reducing the capillary porosity of cement paste and by producing less diffusible and permeable pozzolanic CSH gel than CSH gel of conventional cement hydration. This paper presents a procedure to predict the chloride ion diffusivity and water permeability of the high strength concrete containing silica fume. Water binder ratio, silica fume addition, degree of hydration and volume fraction of aggregates are considered as the major factors influencing concrete diffusivity and permeability in the procedure. Analytical results using the procedure are shown and verified with other data.

  • PDF

A Parametric Study for a Composite Constitutive Model Considering weakened Interfaces and Microcracks (계면손상과 미세균열을 고려한 복합재료 구성모델의 파라미터에 관한 연구)

  • Lee, Haeng-Ki;Pyo, Suk-Hoon;Kim, Hyeong-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.56-59
    • /
    • 2008
  • This paper presents results of a parametric study for a constitutive model (Lee et ai, 1989) for particle-reinforced composites considering weakened interfaces and crack nucleation. Eshelby's tensors for particles with imperfect interfaces (Ju and Chen, 1994) and microcracks (Sun and Ju, 2004) are incorporated into a micromechanical formulation. A parametric study for the microcrack nucleation parameter ${\phi}_{{\upsilon}0}$ and ${\epsilon}^{th}$ is conducted to investigate the sensitivity of the parameter to the constitutive model.

  • PDF