• Title/Summary/Keyword: Micromachined transducer

Search Result 13, Processing Time 0.016 seconds

Development of capacitive Micromachined Ultrasonic Transducer (III) - Performance Test (미세가공 정전용량형 초음파 탐촉자 개발(III) - 탐촉자 성능평가)

  • Kim, Ki-Bok;Ahn, Bong-Young;Park, Hae-Won;Kim, Young-Joo;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.581-589
    • /
    • 2004
  • In this study, the capacitive micromachined ultrasonic transducer(cMUT) was developed based on the previous research results. The cross sectional image of the developed cMUT was characterized. To measure the membrane displacement of the cMUT, the Michelson phase modulation fiber interferometer was constructed. The measured membrane displacement was in good agreement with the result of the finite element analysis. To estimate the ultrasonic wave generated by the cMUT, an ultrasonic system including a pulser, receiver and charge amplifier was used. The cMUT developed in this study shows a good performance and hence will be widely used in the non-contact ultrasonic applications.

Non-Contact Ultrasonic Testing of Aircraft Joints using Laser Generated Lamb Wave (레이저 여기 램파를 이용한 항공기 판재 접합부의 비접촉식 초음파 검사)

  • Jhang, Kyoung-Young;Kim, Hong-Joon;Ceringlia, Donatella;Djordjevic, Boro
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.163-168
    • /
    • 2001
  • Due to aging, adhesively bonded and riveted aircraft lap joints can contain distends, cracks around rivet holes, fatigue induced flaws, and corrosion. It is required for the safety of aircraft to inspect these defects through the whole region of mint in rapid speed. Bond quality or adhesively bonded and riveted aluminum lap splice joints is investigated using non-contact remote ultrasonic nondestructive evaluation (NDE). Non-contact ultrasonic tests are performed using laser generation and air-coupled transducer detection. A Q-switched Nd:YAG laser and a periodic transmission mask are used to generate a selected Lamb mode. The Lamb wave is generated on one side of the lap splice joint, propagates along the plate, interacts with the joint and is detected on the other side by a micromachined air-coupled capacitance transducer. Analysis of recorded signals allows to evaluate the condition of the bond.

  • PDF

Development of capacitive Micromachined Ultrasonic Transducer (II) - Analysis of Microfabrication Process (미세가공 정전용량형 초음파 탐촉자 개발(II) - 미세공정기술 분석)

  • Kim, Ki-Bok;Ahn, Bong-Young;Park, Hae-Won;Kim, Young-Joo;Kim, Kuk-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.573-580
    • /
    • 2004
  • The main goal of this study was to develop a micro-fabrication process for the capacitive micromachined ultrasonic transducer (cMUT). In order to achieve this goal, the former research results of the micro-electro-mechanical system (MEMS) process for the cMUT were analyzed. The membrane deposition, sacrificial layer deposition and etching were found to be a main process of fabricating the cMUT. The optimal conditions for those microfabrication were determined by the experiment. The thickness, uniformity, and residual stress of the $Si_3N_3$ deposition which forms the membrane of the cMUT were characterized after growing the $Si_3N_3$ on Si-wafer under various process conditions. As a sacrificial layer, the growth rate of the $SiO_2$ deposition was analyzed under several process conditions. The optimal etching conditions of the sacrificial layer were analyzed. The microfabrication process developed in this study will be used to fabricate the cMUT.