• Title/Summary/Keyword: Microjet Injection

Search Result 10, Processing Time 0.034 seconds

Experimental Investigation of Supersonic Jet Noise Reduction Using Microjet Injection

  • Mamada, Ayumi;Watanabe, Toshinori;Uzawa, Seiji;Himeno, Takehiro;Oishi, Tsutomu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.622-627
    • /
    • 2008
  • Experiment of active noise control on supersonic jet noise was conducted by use of microjet injection. The microjets were injected to the shear layer of the main jet through 22 small holes at the lip of a rectangular nozzle. Based on the measurement of farfield sound pressure, it was found that the jet noise was effectively reduced by several dB(in some cases up to 10 dB). The power levels of all measurement points were also reduced by use of microjet injection. The microjet affected not only the broadband noise but also the screech tone noise. The sound pressure level, the frequency of the screech tone, and the structure of the jet could be changed by the microjet. Flow visualization with schlieren technique was also made to observe the effect of microjet on the flow field.

  • PDF

A Fundamental Study of the Supersonic Microjet (초음속 마이크로 제트 유동에 관한 기초적 연구)

  • Jeong, M.S.;Kim, H.S.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.622-627
    • /
    • 2001
  • Microjet flows are often encountered in many industrial applications of micro-electro-mechanical systems as well as in medical engineering fields such as a transdermal drug delivery system for needle-free injection of drugs into the skin. The Reynolds numbers of such microjets are usually several orders of magnitude below those of larger-scale jets. The supersonic microjet physics with these low Reynolds numbers are not yet understood to date. Computational modeling and simulation can provide an effective predictive capability for the major features of the supersonic microjets. In the present study, computations using the axisymmetic, compressible, Navier-Stokes equations are applied to understand the supersonic microjet flow physics. The pressure ratio of the microjets is changed to obtain both the under- and over-expanded flows at the exit of the micronozzle. Sonic and supersonic microjets are simulated and compared with some experimental results available. Based on computational results, two microjets are discussed in terms of total pressure, jet decay and supersonic core length.

  • PDF

Development of a painless injector using high speed laser propulsion and its spin-off to medical industry (고속레이저추진원리를 활용한 무통증 주사기의 개발 및 의료산업으로의 Spin-off)

  • Han, Tae-Hee;Yoh, Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.326-330
    • /
    • 2010
  • A laser based needle-free liquid drug injection device has been developed. A laser beam is focused inside the liquid contained in the rubber chamber of micro scale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is 125 ${\mu}m$ and the injected microjet reaches an average velocity of 264 m/s. This device adds the time-varying feature of microjet to the current state of liquid injection for drug delivery.

  • PDF

Painless Microjet Injector Using Laser Pulse Energy (레이저 펄스 에너지를 이용한 무통증 마이크로젯 약물전달시스템)

  • Yoh, Jai-Ick;Han, Tae-Hee;Hah, Jung-Moo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.5
    • /
    • pp.547-550
    • /
    • 2011
  • We have developed a laser-based needle-free liquid drug-injection device. A laser beam is focused inside the liquid contained in the rubber chamber of a micro-scale. The focused laser beam causes explosive bubble growth, and the sudden volume increase in a sealed chamber drives a microjet of liquid drug through the micronozzle. The exit diameter of a nozzle is less than 100 ${\mu}m$, and we verify that the injected microjet is fast enough to penetrate soft human tissue. In the experiment, the microjet penetrated a 5% gelatin-water solution that replicates the human thrombus and pork-fat tissue.

Laser Induced Microjet Drug Delivery System: Drug Permeation Depending on Laser Wavelength and Pulse Duration (레이저 유도 마이크로젯을 활용한 약물 전달 방식: 레이저 파장 및 펄스길이에 따른 약물 침투 분석)

  • Jang, Hun jae;Ham, Hwi chan;Yoh, Jai ick
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.463-468
    • /
    • 2017
  • For transdermal drug delivery, needless injection system is composed of laser and microjet injector. Main mechanism of microjet injector is the laser-induced bubble. Nd:YAG and Er:YAG laser are used as a power source. Laser parameters such as pulse duration and wavelength are considered, which are core parameters to control the bubble motion. The Nd:YAG laser, pulse duration is short than bubble life time making cavitation like bubble while in Er:YAG laser, long pulse duration and high absorption in water drive bubble as a boiling bubble. Detailed motion of bubble and microjet is captured by the high speed camera. So it is observed that microjet characteristics are determined by the bubble behavior. The performance of drug delivery system is evaluated by fluorescent staining of guinea pig skin.

Shock Associated Jet Noise Reduction by a Microjet on the Centerline of the Main Jet (노즐 중심에 설치한 마이크로 제트에 의한 충격파 관련소음 저감)

  • 김진화;유정열
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.92-97
    • /
    • 2003
  • By using a centerbody injection, an effort to reduce shock assoicated noise is made in an underexpanded sonic nozzle with an exit diameter of 10mm. The centerbody or micro nozzle, aligned with the axis of the main jet has an o.d. of 2mm and i.d. of 1.5mm. When measured at 90$^{\circ}$ relative to the main jet the farfield noise spectra showed that the screech tones and broadband shock associated noise can be significantly reduced simply by varying the length of the centerbody and/or mass fraction of the microjet. The maximum reduction in overall sound pressure level (OASPL) was as much as 9 and 4 ㏈ at fully expanded jet Mach numbers Mi of 1.3 and 1.5, respectively, when the length of the centerbody was varied from 0 to 4 main nozzle diameters without blowing. With the aid of the blowing, the maximum reduction in OASPL increased to 12 and 7 ㏈ at M$\sub$j/=1.3 and 1.5, respectively. The impact pressure field in the main jet plume strongly suggested that the reduced periodic pressure distribution in the shear layers and/or centerline is responsible for the reduced screech and broadband shock associated noise. Therefore, the steady blowing by a micro centerbody is a promising technique for shock noise reduction in a supersonic jet.

  • PDF

Development and application of non-invasive drug delivery systems utilizing pulse power, and its application to mouse models (펄스파워를 적용한 비침습 약물 전달기 개발 및 마우스 모델로의 적용)

  • Hwi-Chan Ham;Kyu-Sik Kim;Ji-Hwan Lee;Hyung-Jin Choi;Do-Nyun Kim;Jai-Ick Yoh
    • Journal of IKEEE
    • /
    • v.28 no.1
    • /
    • pp.97-103
    • /
    • 2024
  • Some drugs can offer far better medical effectiveness as it is injected through the intradermal layer of the skin, known as a needle-free injection. However, conventional needle-free devices might deliver a relatively large amount of drug in a just single spot of skin, splitting open the tissue layer structure, which might cause bruising and bleeding. By injecting the small volume with a fast repetition rate in a large surface area of skin, the patient may get much fewer injuries and pain. To achieve that specification, the driving force must be instantaneous and short-pulsed. Such a form of an injection device has been developed but the efficacy of those devices has been rarely examined. Therefore, this study developed the laser-induced microjet device that ejects microjet whose speed is ~310 m/s, during the 400~800 ㎲ of pulse time. The device can eject ~1 µL of the drug at the rate at which each shot repeated 10 shots per second. Using this specification, we evaluated the efficacy of drug injection onto mouse models. After injecting the insulin solution into the mouse model, the blood insulin level is detected, resulting in 20 % of blood insulin level with the ordinary needle syringe injection method.

Experimental Investigation on Key Parameters in Air-powered Needle-free Injection System for Skin Treatment (피부 치료를 위한 공압식 무침 주사 시스템의 주요 인자에 관한 실험적 연구)

  • Kim, Jung Kyung;Mohizin, Abdul;Lee, Seung Ku
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.1
    • /
    • pp.42-47
    • /
    • 2018
  • A needle-free injector is one of the new non-invasive players in impregnating the biological barriers. It is considered as the next phase in drug delivery and therapeutic applications. One of the major fields of application is in skin remodeling procedures. Although many studies were carried out in understanding the principle in the needle-free injection procedure, fewer studies were done with the aim of therapeutic applications. In the present study, we tried to identify key parameters that affect the jet divergence and peak stagnation pressure on the skin surface in a conventional needle-free injector for skin treatment. A summary of the working principle and effect of the key parameters are presented.

Noise Reduction of an Underexpanded Supersonic Jet via Steady Blowing with Microjets (마이크로 제트를 이용한 과소팽창 음속 제트에서의 소음저감)

  • Kim, Jin-Hwa;Kim, Jung-Hoon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1472-1479
    • /
    • 2003
  • An attempt to reduce supersonic jet noise is carried out by using two steady microjets in a round jet. The jet is issued from a round sonic nozzle with an exit diameter of 10 mm. Two micro-nozzles with an inside diameter of 1 mm each are installed on the exit plane at an angle of 45 relative to the main jet axis. Far-field noise was measured at 40 diameters off the jet axis. The angle between a microphone and the jet axis is 30 or 90$^{\circ}$. For an injection rate of 4-6% of the main jet, screech tones were completely suppressed by the microjets. The reduction in the overall sound pressure levels were 2.4 and 2.7 dB for 90 and 30 measuring directions, respectively. However, the enhancement of mixing/spreading of the jet by the microjet was negligible. The reduction of noise is probably due to distorted shock cell structures and/or deformed large scale vortical structures by the microjets.

Noise Reduction of a Underexpanded Supersonic Jet via Steady Blowing with Microjets (소형제트를 이용한 과소팽창 음속 제트에서의 소음저감)

  • Kim Jin-Hwa;Kim Jung Hoon;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.747-750
    • /
    • 2002
  • An attempt to reduce supersonic Jet noise is carried out by using two steady microjets in a round jet. The jet is issued from a round sonic nozzle with an exit diameter of 10mm. Two micro-nozzles with an inside diameter of 1mm each are installed on the exit plane with an off-axis angle of $45^{\circ}$. Far-field noise was measured at a location 40 diameters off the jet axis. The angles between a microphone and the jet axis are $45^{\circ}\;and\;90^{\circ}$. For an injection rate less than $1{\%}$ of the main jet, screech tones were completely suppressed by the microjets. The reduction in the ovelall sound pressure levels were $2.4\;and\;2.7\;dB\;for\;90^{\circ}\;and\;45^{\circ}$ directions, respectively. The enhancement of mixing/spreading of the jet by the microjet was negligible. The reduction of noise is probably due to distorted shock cell structures and/or broken large scale vortical structures by the microjets.

  • PDF