• Title/Summary/Keyword: Microinjection

Search Result 202, Processing Time 0.037 seconds

Reproductive technologies needed for the generation of precise gene-edited pigs in the pathways from laboratory to farm

  • Ching-Fu Tu;Shu-Hui Peng;Chin-kai Chuang;Chi-Hong Wong;Tien-Shuh Yang
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.339-349
    • /
    • 2023
  • Gene editing (GE) offers a new breeding technique (NBT) of sustainable value to animal agriculture. There are 3 GE working sites covering 5 feasible pathways to generate GE pigs along with the crucial intervals of GE/genotyping, microinjection/electroporation, induced pluripotent stem cells, somatic cell nuclear transfer, cryopreservation, and nonsurgical embryo transfer. The extension of NBT in the new era of pig breeding depends on the synergistic effect of GE and reproductive biotechnologies; the outcome relies not only on scientific due diligence and operational excellence but also on the feasibility of application on farms to improve sustainability.

Transfer of Isolated Mitochondria to Bovine Oocytes by Microinjection (미세주입을 이용한 난자로의 분리된 미토콘드리아 전달)

  • Baek, Sang-Ki;Byun, June-Ho;Kim, Bo Gyu;Lee, A ram;Cho, Young-Soo;Kim, Ik-Sung;Seo, Gang-Mi;Chung, Se-Kyo;Lee, Joon-Hee;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1445-1451
    • /
    • 2017
  • Mitochondria play a central role in energy generation by using electron transport coupled with oxidative phosphorylation. They also participate in other important cellular functions including metabolism, apoptosis, signaling, and reactive oxygen species production. Therefore, mitochondrial dysfunction is known to contribute to a variety of human diseases. Furthermore, there are various inherited diseases of energy metabolism due to mitochondrial DNA (mtDNA) mutations. Unfortunately, therapeutic options for these inherited mtDNA diseases are extremely limited. In this regard, mitochondrial replacement techniques are taking on increased importance in developing a clinical approach to inherited mtDNA diseases. In this study, green fluorescence protein (GFP)-tagged mitochondria were isolated by differential centrifugation from a mammalian cell line. Using microinjection technique, the isolated GFP-tagged mitochondria were then transferred to bovine oocytes that were triggered for early development. During the early developmental period from bovine oocytes to blastocysts, the transferred mitochondria were observed using fluorescent microscopy. The microinjected mitochondria were dispersed rapidly into the cytoplasm of oocytes and were passed down to subsequent cells of 2-cell, 4-cell, 8-cell, morula, and blastocyst stages. Together, these results demonstrate a successful in vitro transfer of isolated mitochondria to oocytes and provide a model for mitochondrial replacement implicated in inherited mtDNA diseases and animal cloning.

Improvement of Pregnancy Rate by the Selection of Early Cleavage Embryos to 2-cell Stage in Human IVF (2세포기로의 조기난할 배아 선발을 이용한 체외수정술의 임신율 증가)

  • Park, Sea Hee;Joo, Bo Sun;Lee, Su Kyung;Kim, Kyung Sue;Moon, Hwa Sook
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.1
    • /
    • pp.47-54
    • /
    • 2005
  • Objective: Evaluation of embryos using early cleavage to 2-cell stage has been proposed, but a critical time-point for selecting embryos is unclear. The aim of the present study is to provide a guideline including critical time-point in the selection of early cleaving embryo for the reduction of multiple pregnancies as well as the increase of pregnancy rate in human IVF. Methods: This prospective study was performed in 116 cycles from 85 patients who underwent conventional IVF or ICSI at the infertility clinic of Good Moonhwa Hospital from January 2002 to December 2003. Early cleavage (EC) of embryos to 2-cell stage was assessed at 25 h and 27 h postinsemination/microinjection. Embryos that had early cleaved at each time point were designated as EC-1 and EC-2, respectively, while others were designated as non-early cleavage (NEC). Results: At least one early cleavage embryo was observed in 54 (46.6%) for the EC-1 and 84 (72.4%) for the EC-2 of the 116 cycles assessed. Clinical pregnancy rates (PR) were significantly higher in the EC-1 group (66.7%) compared to the EC-2 group (53.6%) or the NEC group (31.2%) (p<0.05). Significant improvement of the pregnancy rate was found when at least two or more embryos were early cleaved at 25 h postinsemination or when the proportion of early cleavage embryo at 25 h postinsemination was higher than 20% (p<0.05). Conclusion: The critical time-point for the selection of early cleavage embryos with high implantation potential is more effective in 25 h postinsemination/microinjection compared to 27 h. The proportion as well as number of early cleavage embryos is also an important factor for the prediction of pregnancy outcome and the chance of multiple pregnancies. These results demonstrated that the evaluation of early cleavage embryos to 2-cell stage is an easy, simple, and objective method for the selection of good quality embryos suitable for embryo transfer.

Establishment of Efficient Microinjection System in the Porcine Embryos

  • Malaweera, Don Buddika Oshadi;Ramachandra, Sisitha;Wu, Jun-Bo;Oh, Seung-Kyu;Kim, Seung-Hwan;Kim, Seok-Joong;Shin, Sang-Tae;Cho, Jong-Ki
    • Journal of Embryo Transfer
    • /
    • v.29 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • Transcription activator like effector nucleases (TALENs) are artificial restriction enzymes generated by fusing a TALE DNA binding domain to a DNA cleavage domain which remove and introduce specific genes to produce transgenic animals. To investigate the efficient laboratory techniques for the injection of TALEN mRNA, pEGFP-N1 commercial plasmid were microinjected into porcine parthenogenetic and in vitro fertilization (IVF). In Experiment 1, to investigate injection time, compared 4 different time durations (2 hr, 4 hrs, 6 hrs & 8 hrs) after post activation of parthenogenetic embryos and after 6 hrs of co-incubation with sperms in IVF embryos. There were significant difference (P<0.05) in development to the blastocysts (4.4, 8.9, 3.9, 0.6%), GFP expression in blastocysts (1.3, 5.7, 2.3, 0.0%) which injected after post activation of 4 hrs compared with other 3 groups. IVF embryos after 2 hrs and 4 hrs injected were expressed GFP significantly higher than rest of two groups (P<0.05). In Experiment 2, compared development of 2 different concentrations ($20ng/{\mu}l$ and $50ng/{\mu}l$) of EGFP injection. There were significant difference (P<0.05) between two treatments which has higher cleavage (58.8 vs 41.9%), blastocysts development rate (13.0 vs 11.1%) and GFP expressed blastocysts (5.7 vs 0.0%) in $20ng/{\mu}l$ than the $50ng/{\mu}l$ in parthenogenetic embryos. In IVF embryos, only $20ng/{\mu}l$ injected embryos were expressed GFP (4.2%) after 7 days of incubation and 77.3 vs 64.7% of cleavage, 26.4 vs 23.5% development to blastocysts. In Experiment 3, three different volumes (5, 10 and 20 pl) were microinjected into porcine embryos to determine the most appropriate volume. Out of 3 groups, significantly higher development rates of cleavage (68.3, 58.0, 29.3%), blastocysts (11.7, 12.7, 0.5%) and GFP expressed blastocysts (2.9, 7.8, 0.0%) were shown in the 10 pl group (P<0.05). In conclusion, these results imply that $20ng/{\mu}l$ concentration, 10 pl of volume and injection at 4 hrs after post activation for parthenogenetic and 2~4 hrs after IVF, $20ng/{\mu}l$ concentration and 10 pl volume for IVF embryos were more effective microinjection conditions.

Effects of In Vitro Culture Systems on the Development of In Vitro Fertilized or DNA-Microinjected Embryos (체외 배양 체계가 체외수정 및 유전자 미세주입 수정란의 발달에 미치는 영향)

  • Park Y. S.;Min K. S.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.3
    • /
    • pp.181-186
    • /
    • 2005
  • This experiment was conducted to investigate effects of the two different in vitro production systems, serumcontaining system (IVM, IVF and IVC; TCM199, TALP and CR1aa) and serum-free system (IVM, IVF and IVC; IVMD101, IVMD100 and IVMD101), on the development of in vitro fertilized or DNA-microiniected embryos. We also examined the effect of DNA dosage and its expression pattern in embryos. The DNA used for microinjection was a green fluorescence protein gene. The development rates to $\geq$ 2cell, 8cell and blastocyst stage were significantly higher in vitro fertilized embryos than those in DNA-microinjected embryos. The development rate to the 8-cell stage was significantly higher in serum-free system than in serum-containing system (p<0.05; $3.3\%\;vs.\;15.5\%\;and\;21.4\%$, respectively). The development rates to the blastocyst stage of in vitro fertilzed or DNA-microinjected embryos between two different culture system ($2.7\%\;vs.\;2.3\%\;and\;23.0\%\;vs.\;23.6\%$, respectively) were not different. The development rates of embryos injected 2 ng/uL DNA was higher. than those of embryos injected 4 or 8 ng/uL DNA. The GFP expression rate of 1-cell embryos was significantly higher than that of 2-cell and 4-cell embryos, whereas the rates were not different between 4-cell and blastocyst-stage embryos.

Developmental Stage-Specific Expression Patterns of c-rn yc and myn Proto-Oncogenes and a Possible Role of myn in Preimplantation Mouse Embryo Development (착상선 생쥐 초기배아에서 c-myc과 myn유전자의 발현 기능에 관한 연구)

  • 이상구;이성호;김경진
    • The Korean Journal of Zoology
    • /
    • v.39 no.4
    • /
    • pp.352-361
    • /
    • 1996
  • The c-myc proto-onco9ene, one of the immediately early genes, is involved in ceflular proliferation and differentiation, and its biologleal function is regulated hy dimerization with a heterodimeric partner, myn. In the present study, gene expression patterns of c-myc and myn during mouse preimplantation embryo development were examined using a semi-quantitative reverse transcription-poiymerase chain reaction (RT-PCR). Myn transcripts were rather constitutively expressed throughout embryonic stages with a slight increase only at biastocyst stage. in contrast, expression of c-myc transcripts wm developmental stage-'pedfic. The c-myc transcripts were detected at 1-cell stage, declined abruptly at 2-cell stage and then increased gradually at blastocyst stage. To examine the possible role of myn during preimpiantation mouse embryo development, two myn antisense oligonucleotides spanning the tail of zipper dognain (myn2; 20-mer) and the second helix domain (myn3; 20-mer) were microinjected into the fertilized 1-cellembryos. Microinjection of myn2 and myn3 resulted in developmental tion at morula/biastocyst transition stage, leading to the fiagentation of embryos. Talien together, these results suggest that c-myc and its heterodimeric partner, myn, are differentially expressed In a developmental stage-dependent manner, and myn may play an important role in mouse preimpiantation embryo development.

  • PDF

Construction of Transgenic Silkworms Expressing Human Stem Cell Factor (hSCF) (인간 유래 Stem Cell Factor (hSCF) 재조합단백질이 발현되는 누에형질전환체 제작)

  • Kim, Sung-Wan;Yun, Eun-Young;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Kwon, O-Yu;Goo, Tae-Won
    • Journal of Life Science
    • /
    • v.21 no.12
    • /
    • pp.1726-1731
    • /
    • 2011
  • Human Stem Cell Factor (hSCF) is a cytokine that binds to the c-Kit receptor and plays an important role in hematopoiesis, spermatogenesis, and melanogenesis. To produce the human Stem Cell Factor (hSCF) recombinant protein, we constructed a germline transgenic silkworm using the piggyback vector. The expression of the hSCF gene was driven by the Drosophila heat shock protein 70 (dHsp70) promoter. 3XP3 promotor-driven EGFP was used as a marker which allowed us to rapidly distinguish the transgenic silkworm. A mixture of the donor and helper vector was micro-injected into 1,020 eggs of bivoltin silkworms, Keomokjam. We obtained approximately 22 G1 broods that were EGFP-positive. The expression of the hSCF gene in the transgenic silkworm was analyzed by SDS-PAGE and immunoblotting. Also, analysis of insertion sites into the silkworm genome using inverse PCR showed that exogenous DNA was inserted into the transgenic silkworm genome. These results show that successfully constructed transgenic silkworm expresses the hSCF recombinant protein.

A Study of the Retrovirus-Mediated Transgenic Chicken Production on Chicken Embryos (닭 수정란에서 Retrovirus를 이용한 형질전환 닭 생산 연구)

  • Byun S. J.;Park C.;Kim S. W.;Park J. K.;Chang W. K.;Yang B. S.;Kim T. Y.;Sohn S. H.;Kim S. H.;Jeon I. S.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.4
    • /
    • pp.225-229
    • /
    • 2005
  • Microinjection of recombinant retrovirus beneath the blastoderm of non-incubated chicken embryo is now the most widespread method for generating transgenic chickens, but transgenesis rates are very low. So to improve this problem, we first introduced retrovirus vector carrying RSV-GFP gene to an one-cell embryo culture system. To investigate whether retrovirus could work on an one-cell chicken embryo, we microinjected the concentrated retrovirus stocks into the germinal disc of one cell or stage-X chicken embryos. Analysis of reporter gene expression on day 4 embryos showed that GFP expression was observed in the only stage-X chicken embryo but was not in the one-cell embryo group. These results suggest that retrovirus system is the most efficient method to generate transgenic chickens in the stage-X embryo.

Transcription and Export of RNase MRP RNA in Xenopus Iaevis Oocyetes

  • Jeong, Seon-Ju
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.363-370
    • /
    • 1997
  • RNase MRP is a ribonucleoprotein complex with a site-specific endonuclease activity. Its original substrate for cleavage is the small mitochondrial RNA near the mitochondrial DNA replication origin, thus it was proposed to generate the primer for mtDNA replication. Recently, it has been shown to have another substrate in the nucleus, such as pre-S.8S ribosomal RNA in nucleolus. The gene for the RNA component of RNase MRP (MRP RNA) was found to be encoded by the nucleus genome, suggesting an interesting intracellular trafficking of MRP RNA to both mitochondria and nucleolus after transcription in nucleus. In this study, genomic DNA encoding MRP RNA was microinjected into the nucleus of Xenopus oocytes, to analyze promoter regions involved in the transcription. It showed that the proximal sequence element and TATA box are important for basal level transcription; octamer motif and Sp1 binding sites are for elevated level transcription. Most of Xenopus MRP RNA was exported out to the cytoplasm following transcription in the nucleus. Utilizing various hybrid constructs, export of MRP RNA was found to be regulated by the promoter and the 5' half of the coding region of the gene. Interestingly, the transcription in nucleus seems to be coupled to the export of MRP RNA to cytoplasm. Intracellular transport of injected MRP RNA can be easily visualized by whole-mount in situ hybridization following microinjection; it also shows possible intra-nuclear sites for transcription and export of MRP RNA.

  • PDF