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Abstract: Gene editing (GE) offers a new breeding technique (NBT) of sustainable value 
to animal agriculture. There are 3 GE working sites covering 5 feasible pathways to generate 
GE pigs along with the crucial intervals of GE/genotyping, microinjection/electroporation, 
induced pluripotent stem cells, somatic cell nuclear transfer, cryopreservation, and nonsurgical 
embryo transfer. The extension of NBT in the new era of pig breeding depends on the 
synergistic effect of GE and reproductive biotechnologies; the outcome relies not only on 
scientific due diligence and operational excellence but also on the feasibility of application 
on farms to improve sustainability.
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INTRODUCTION

Pig breeding has moved forward from the judging performance index to include genetic 
marker-assisted evaluation. With progress in understanding genomics and the imple-
mentation of advanced technologies, scientists can specifically alter a pig’s DNA to create 
novel changes or erase deleterious effects while disturbing animal wellbeing very little. 
Currently, gene-editing (GE) technology, especially the clustered regularly interspaced 
short palindromic repeat-CRISPR associated protein 9 (CRISPR/Cas9), has become the 
dominant approach, because it is characterized by a low technological barrier, high effi-
ciency, and low cost. The generation of GE pigs has been successful with respect to improving 
meat quantity/quality, thermogenesis of the newborn, and disease resistance in the appli-
cation of new breeding biotechnology (NBT), and these achievements have been recently 
reviewed [1].
 Despite the simplicity of GE in the laboratory, the subsequent practice of CRISPR/Cas9 
to generate GE pigs remains complex and ineffective, requiring enormous infrastructure 
and fiscal inputs. The pathway from laboratory DNA manipulation to on-farm neonatal 
delivery is a technically challenging production system and requires effective support from 
a series of biotechnologies. This review emphasizes the application of sound methods and 
improved outcomes while reducing the impacts on the generation of GE pigs.

THE PATHWAYS OF GENERATION OF GENE-EDITED PIGS 
FROM LABORATORY TO FARM

A stepwise diagram (Figure 1) summarizes five different approaches together with the as-
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sisted biotechnologies required to generate GE pigs. The first 
begins with the direct microinjection of the GE DNA vectors 
into the pronucleus or the GE guide RNA (gRNA) and Cas9 
mRNA into the cytoplasm of newly fertilized eggs (zygotes) 
that are surgically transferred into the fallopian tube of the 
surrogate estrus-synchronized to induce pregnancy. Allowing 
injected embryos (zygotes) to develop into morulas or blas-
tocysts by in vitro culture (IVC) for embryo transfer (ET) or 
leading to cryopreservation/embryo banking for on-farm 
nonsurgical ET (NSET) is termed Way 2. However, in sup-
port of embryonic development, the current IVC system 
provides little substantial value, and misconduct always exists. 
Ways 3 to 5 start with GE somatic cell preparation followed 
by somatic cell nuclear transfer (SCNT) to produce recon-
structed embryos. Way 3 performs surgical ET the day after 
SCNT. Way 4 includes viability selection of reconstructed 
embryos, IVC, and then either surgical ET (4a) or NSET (4b) 
to surrogates reared on farms. The feasible approach, or Way 
5, is to nurture the reconstructed embryos, and those that 
develop into blastocysts shall be collected and vitrified for 
future on-farm extension/trading uses by adopting NEST at 
a later convenient time.
 The crucial intervals of GE (I), induced pluripotent stem 
cell (iPSC) (II), SCNT (III), cryopreservation (IV), and NSET 
(V) are discussed in the present paper to realize the applica-
tion of NBT in the GE pig production system from laboratory 
to farm.

Gene editing
There are three methods available for GE, namely, zinc finger 
nuclease (ZFN), transcription activator-like effector nuclease 
(TALEN), and CRISPR/Cas9, and their application in pigs, 
particularly CRISPR/Cas9, has been recently reviewed [2,3]. 
The GE vectors or tools create genomic DNA double strains 
breakage (DSB) that requires immediate repair via nonho-
mologous end joining (NHEJ) [4] and/or microhomology-
mediated end joining [5] to sustain cell survival with the 
risks of functional loss of gene editing. However, during 
chromosome cleavage and quick NHEJ, insertion and dele-
tion (indel) may occur differently, resulting in various genetic 
conformations [6]. Although little chance of off-targeted 
editing has been claimed, there are several Cas nuclease 
modifications that attempt to enhance the precision of GE 
genetics [6]. A practical approach would be to use the two 
nearby gDNA/gRNAs for GE; thus, DSBs occur simultane-
ously to create a short fragment DNA deletion to simplify 
the genotype screening of GE cells/animals by polymerase 
chain reaction (PCR) without intense sequencing.
 GE can be undertaken at three sites (A, B, and C in Figure 
1). Site A uses newly fertilized eggs and microinjects porcine 
U6 promotor/gDNA and βactin (or others) promotor/Cas9 
plasmid vectors directly into the pronucleus or microinjects 
into the cytoplasm with in vitro transcript gRNA and Cas9 
mRNA (or protein). The porcine U6 promotor is a type III 
RNA polymerase III promoter that controls short hairpin 
RNA expression and effectively expresses gDNA to gRNA 

Figure 1. The pathways from laboratory to farm and the assisted biotechnology needed to generate and extend gene-edited (GE) pigs. (A), (B), 
and (C) are the sites able to conduct GE. Routes 1 to 5 represent different approaches to achieve successful outcomes with different require-
ments or paces. The solid and broken lines indicate the main and alternate courses, respectively. BCs, blastocysts; ET, embryo transfer; iPSC, in-
duced pluripotent stem cells; IVC, in vitro culture; IVM, in vitro maturation; MII, metaphase II oocytes; M, morula; NSET, nonsurgical ET; PN, pronu-
clear.
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[7]. Site B is fibroblast GE, followed by SCNT with or without 
genotyping. Site C is a method that simultaneously includes 
GE, iPSC induction and candidate iPSC genotyping. At sites 
B and C, the cells will be reconstructed with enucleated oo-
cytes, which mature in vitro (IVM) to the metaphase II (MII) 
stage. In the site A method, since GE is performed with no 
genotyping, mosaic founders carrying multiple genotypes 
with variant indels would usually be obtained. In site B, GE 
fibroblasts may generate cloned animals carrying deviant 
genotypes if not preselected; thus, prescreening is essential 
before SCNT to ensure that GE animals are purposely wanted. 
Site C allows the iPSC subclones to be carefully prescreened 
by PCR followed by amplicon sequencing to ensure that the 
subclones obtained are genotype correct. However, the efficacy 
of generating cloned pigs by using iPSCs and SCNT remains 
to be improved.

Microinjection and electroporation
During maturation, mammalian oocytes enrich their protein 
factors for DNA replication, repair and transcription and 
make small RNAs and mRNA [8], as well as growth factors 
[9], to prepare for new fertilized egg cleavage and early-stage 
development before zygotic genome DNA expression turns 
on. All these proteins and nucleic acids enable the direct 
microinjection of the GE DNA vectors or gRNAs and Cas9 
mRNA (or protein) to engage their functions in the host 
genome edited to generate GE pigs. We generated alpha1,3 
galactosyltransferase (GGTA1) KO pigs by pronuclear mi-
croinjection with two gDNAs and Cas9 plasmid vectors [10] 
and CMP-N-acetylneuraminic acid hydroxylase (CMAH) 
KO pigs [11] and CD163 KO or exon 7 deleted pigs [12] by 
cytoplasm microinjection with two gRNAs and Cas9 mRNA. 
As the newly fertilized eggs replicate DNA vigorously, gDNA/
Cas9 plasmids or gRNA/Cas9 mRNA microinjection usually 
results in a high success rate of GE pig generation. However, 
surgical harvesting of fertilized eggs, microinjection, and 
surgical ET require intensive skills available chiefly in research 
institutes and thus can hardly be practiced on a farm. Thus, 
a realistic approach needs to be established for the future ex-
tension or commercial uses of GE pigs.
 In addition to microinjection, electroporation is advanta-
geous, as it can vastly treat in vitro-fertilized zygotes with 
gRNA and Cas9 protein to produce GE embryos [13], and 
by applying it, GGTA1 KO [14] and CD163 KO pigs [15] 
were successfully generated. However, using oocytes harvest-
ed from a slaughterhouse leads to the problem of having an 
unknown genetic background of the oocytes, and such an 
approach therefore is absent in the pathways of Figure 1. In-
stead, to source cells derived from elite stock is the best choice 
for adding value to existent superior performance stock. Obvi-
ously, electroporation is the ultimate process in cell transfection 
and iPSC/GE induction, especially using plasmid vectors 

without the integration of any transgenes.

Induced pluripotent stem cells 
GE somatic cells usually need a selection reporter, e.g., fluo-
rescent or antibiotic resistance genes, to assist in edited cell 
screening [16]. However, when those cells are used as nuclear 
donors and cloned, the becoming animals will be considered 
genetic modification organisms (GMOs) and legally prohibited 
or regulated before entering the food chain. When the GE is 
simultaneously arranged with iPSCs and prescreened, the 
definite genotype carried can be confirmed to contain no 
exogenes. Thus, after iPSC reconstruction, the animals de-
veloped are not transgenic and should be exempt from GMO 
regulations and treated as normal farm animals.
 In 2006, Takahashi and Yamanaka [17] reported that only 
four transcription factors, Oct4, Sox2, Klf4, and c-Myc (OSKM), 
are needed for inducing mouse iPSCs. In 2009, porcine iPSCs 
(piPSCs) were successfully generated by three different re-
search groups [18-20]. Then, in 2010 and 2011, West et al 
[21,22] produced germline transmitted chimeric pigs from 
piPSC. Furthermore, Liu et al [23] generated piPSCs by using 
porcine Oct4 and Klf4 combined with small molecules, and 
their pluripotency was proven by the formation of teratomas. 
However, since then, no other piPSCs have been reported 
regarding chimeric pig generation due to exogene issues, 
even using morulas injected with iPSCs or cloned 4-cell em-
bryo aggregates [24]. To avoid this concern, we established 
pCX-pOct4-2A-hKLF4-2A-pSox2 (pCX-OKS), pCX-pcMyc, 
and pCX-hAID-2A-hTDG plasmid DNAs; by using these 
plasmids, primary mouse fibroblast cells were successfully 
induced into iPSCs and characterized by chimeric mouse 
generation with germline transmission capability [25]. An 
improved pCX-pOct4-2A-pSox2-2A-pKlf-2A-hNANOG 
(pCX-OSKN), pCX-pcMyc, and pCX-TAg plasmid cocktail 
was developed and routinely utilized to induce the obtained 
primary fibroblast cells into piPSCs (Figure 2A) for research 
in pig production and medical applications.
 Currently, human iPSCs have been widely studied; the 
trends in clinical trials with potentials in several tissues have 
been recently reviewed [26]. Apparently, before the cells can 
be clinically used, the genome of iPSCs should be edited 
and/or modified. In 2015, Howden et al [27] first used pa-
tient fibroblasts for simultaneous reprogramming and gene 
correction to generate DNA methyltransferase 3B (DNMT3B) 
and Oct4 with green fluorescent protein (GFP) genes in KI 
iPSCs, but only 3% to 5% of their iPSCs expressed GFP. The 
same strategy was followed in numerous studies, and we 
used the same method to generate CD163 exon 7-deleted 
(CD163ΔE7) piPSCs (Figure 2A). After PCR screening (Fig-
ure 2B) and amplicon sequencing (Figure 2C), the candidates 
could simply be confirmed, with 8% to 67% (Figure 2B) of 
piPSCs suitable for further cloning uses. 
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Figure 2. Generation of pig CD163 exon 7-edited porcine induced pluripotent stem cells (piPSCs) by transfection of iPSC-induced factors and 
CRISPR/Cas9 gene-editing plasmid vectors by electroporation. (A) The morphology of piPSCs after two (2nd EP), three (3rd EP), or four (4th EP) 
electroporations; the treated primary fibroblast cells were established from a neonatal piglet, L259-10, and an adult sow, D529-16. (B) All candi-
date piPSCs were analyzed by genomic DNA PCR. The red color is homologous piPSCs carrying double chromosome CD163 exon 7 deleted, and 
the green colors are heterologous; the numbers and % in parentheses indicate the efficiency of homologous GE. (C) PCR amplicons from all ho-
mologous GE/CD163 KO piPSCs were further confirmed by DNA sequencing, and exon 7 of the CD163 gene was proven to be deleted. CRISPR/
Cas9, clustered regularly interspaced short palindromic repeat-CRISPR associated protein 9; PCR, polymerase chain reaction; GE, gene-edited. 
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 However, difficulties remain in using piPSCs as nuclear 
donors for SCNT to clone pigs. Du et al [24] used 6 piPSC 
lines, which all expressed iPSC-inducing genes but failed to 
generate any cloned pigs; cloning early-stage embryos was 
also possible by using piPSCs as nuclear donors for SCNT 
[28-30]. Live piglets were finally successfully generated by 
silencing exogenous transcription factors and increasing 
histone acetylation [31] or restoring the expression of the 
imprinted gene retrotransposon Gag like 1 (RTL1) to mini-
mize fetal loss due to post implantation failure [32].

Somatic cell nuclear transfer
Three years after the success of sheep cloning [33], cloned 
pigs were generated by three different groups in 2000 [34-
36]. The generation of cloned pigs remains problematic and 
is labor intensive and inefficient; approximately 0.3% to 2% 
of transferred embryos can develop into live piglets [36]. 
The challenges are derived from the type/cycle of donor 
cells selected, methods of oocyte enucleation and nuclear 
reconstitution, reprogramming/epigenetics of reconstructed 
embryos, zygotic gene activation, and IVC systems. The 
added shortcomings inevitably hinder the development 
and implantation of reconstructed embryos, and the con-
cerning aspects of pig cloning are briefly discussed.
 In donor cell selection, fibroblast cells from fetal tissues, 
ear [37], kidney [38], cumulus cells [39], adipose-derived 
[40] and bone mesenchymal stem cells [41], and recently ex-
traembryonic endoderm cells [42], have all been successfully 
used to generate cloned embryos or pigs. We suggest that fi-
broblasts from neonatal piglets delivered from elite sires and 
dams with farm-preferred traits are a better source than others 
for generating GE and cloning pigs to maintain genetic di-
versity in pig production. The donor cells were usually starved 
with 0.5% fetus calf serum (FCS) for 3 to 5 days to synchro-
nize the cell cycle at the G0/G1 stage. However, evidence 
showed that 5 days of starvation of donor cells with no serum 
improved blastocyst formation rate, but H3K9me3 levels re-
mained unchanged [43], and the cells with size d≤13 μm 
exhibited a higher percentage at the resting/proliferative 
(G0/G1) stages with a better proliferation ability [44]. Since 
chemical-assisted enucleation was firstly developed in con-
ventional SCNT by Yin et al [45], and used in handmade 
cloning [46], the nocodazole or demecolcine are commonly 
used for protruding second polar body and followed by 
sucking out of partial cytoplasm near the polar body of MII 
oocytes.
 The reconstitution approaches include electrofusion of 
subzonal donor cells with enucleated oocytes [47], direct 
microinjection of donor cells into the cytoplasm of enucleated 
oocytes [36], or electrofusion of 2 bisected enucleated oocytes 
with one donor cell [48]. After reconstitution, the embryos 
will be further activated by electricity or chemical agents. 

Recently, a simple and more reliable chemical activation by 
ionomycin/TPEN (N,N,N′,N′-tetrakis[2-pyridinylmethyl]-
1,2-ethanediamine) was established [49], and by a similar 
treatment, cloned pigs were successfully generated [50]. The 
reconstructed embryos were further in vitro cultured in 
NCSU-37 or PZM-5 medium and then surgically transferred 
into the recipients on the next day or after the cleavage rate 
and blastocyst formation rate were measured 2 and 5 to 6 days 
later, respectively, and surgical ET or NSET [44] to surro-
gates. However, the development of reconstructed embryos 
is vulnerable to reprogramming complications [51], includ-
ing genomic DNA methylation [52], histone deacetylation 
and methylation [51], apoptosis [53], endoplasmic reticulum 
oxidative stress [54], heteroplasmic mitochondrial DNA 
[55], and X-chromosome inactivation [51]. A recent review 
described in detail the strategies to improve the efficiency 
of SCNT [56].
 The complexity of reprogramming of reconstructed em-
bryos mostly occurs on the methylation of CpG islands of 
genomic DNA [52], histone deacetylation on histone 3 lysine 
9 acetylation (H3K9ac) and H3K14ac, and methylation of 
histone 3 lysine 4 trimethylation (H3K4me3), H3K9me3 
and H3K27me3 [51]. In genomic genes, DNA methyltrans-
ferases (DNMT families, including DNMT1 and DNMT3) 
are involved in the methylation of cytosine (5-methylcytosine, 
5mC) on CpG islands [57] in cell differentiation. During oocyte 
maturation, 5mC can be oxidized by ten-eleven transloca-
tion 3 (Tet3) DNA dioxygenase to hydroxylmethylcytosine 
(5hmC) [58]. With the addition of vitamin C (Vit. C) to IVC 
medium, the implantation of mouse embryos could be im-
proved, because 5mC is oxidized into 5hmC [59], and also 
to enhance the SCNT porcine blastocyst development rate 
[60,61]. In addition, Vit. C was found to remove approxi-
mately 40% of the methyl group of genomic DNA by oxidizing 
5mC into 5-formylcytosine (5fC) and 5-carboxylcytosine 
(5caC) by Tet DNA dioxygenase [62]. This vitamin could 
also reduce the methylation content in SCNT porcine em-
bryos [63] and enhance zygotic genome activation (ZGA) 
[64]. Evidently, Vit. C is beneficial for porcine reconstructed 
embryo development and should be added to the medium 
from IVM to IVC.
 The most complicated reprogramming occurs in histone 
deacetylation and methylation, which influence ZGA. His-
tone deacetylation can be inhibited by trichostatin A (TSA) 
[65], which also induces apoptosis in SCNT embryos [66]. 
Instead, using 500 nM scriptaid (6-[1,3-dioxo-1H,3H-benzo(de)
isoquinolin-2-yl]-hexanoic acid hydroxyamide), 80% of the 
recipients could be impregnated, and farrowing live cloned 
piglets using scriptaid is a better choice than TSA [67]. More-
over, scriptaid not only increased acetylation levels on H3K9ac 
but also reduced H3K9me3 and apoptosis, including increas-
ing Bcl-xl and decreasing Bax and Casp3 expression [68]. A 
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similar result with several beneficial effects has also been ob-
tained by using chaetocin [69].
 In histone (H) methylation, the DNA coiled on the sur-
face of the nucleosome, which is composed of 2 sets of H2a, 
H2b, H3, and H4 [70], and the methylation occurred at the 
4, 9, and 27 lysine (K) of the H3 tail and was represented 
by H3K4me3, H3K9me3, and H3K27me3 along with the 
disruption of SCNT embryo reprogramming [51]. By com-
paring the methylation of IVF and SCNT embryos, the most 
variance occurred at H3K4me3 rather than at H3K9me3 
and H3K27me3 [51]. The intensity of H3K4me3 at 2 to 4 
cell embryos from IVF was higher than that from SCNT, 
but the difference was inverted in 8-cell stage embryos [51]. 
Recently, lysine demethylase (KDM) has been proven to 
reduce H3K9me3 content and improve SCNT mouse blas-
tocyst formation [71], and after SCNT, the injection of 
Kdm4d mRNA resulted in a higher number of live-born 
cloned mice [72]. The benefits of using KDM4A mRNA in 
human blastocyst cloning [73] and Kdm4d mRNA in mon-
key cloning [74] were also found.
 In porcine SCNT, Weng et al [75] injected Kdm4a mRNA 
into reconstructed embryos, which resulted in a higher blas-
tocyst formation rate and cell numbers; the same advantage 
was also gained by adding only chaetocin into IVC medium 
after activation, as chaetocin, a 3-6 epi-dithio-diketopiperazine 
secreted by Chaetomium minutum, inhibited methyltrans-
ferase activity [76]. Recently, by adding chaetocin to IVC 
medium for 24 h after activation, Jeong et al [77] improved 
reconstructed embryonic development, including the cleavage 
rate, blastocyst formation rate and cell number, and increased 
Oct4, Nanog, Sox2, Cdx2, Bcl2, and Bcl-x1 gene expression, 
but SUV39h1 and SUV39h2 (DNA methyltransferase genes) 
expression and H3K9me3 content were decreased. By sup-
plying chaetocin and TSA at the same time, the reconstructed 
embryo development and the levels of H3K9me3 and H3K9ac 
in SCNT embryos were further improved; moreover, the ex-
pression of ZGA- and imprinting-related genes was also 
increased [78].
 The SCNT comprises enucleation, donor cell injection, 
and KDM mRNA injection; those labor-intensive micro-
manipulation are inefficiency with low success rates and 
thus discouraging GE pig generation for potential farm uses. 
Improving the efficacy of chemical enucleation is vital for 
oocysts; direct cytoplasm injection with donor cells to minimize 
abnormal reprogramming by using IVC with TSA/scrip-
taid/chaetocin instead of KDM mRNA should be the best 
option.

Vitrification of porcine cloning embryos
In 1993, Yoshino et al [79] developed a 4-step vitrification 
procedure by using a high concentration of cryoprotectant 
to preserve porcine expanding blastocysts, making them 

remain transparent (no ice crystals) under a fast cooling 
rate without a machine freezer. Katayama et al [80] cryo-
preserved human oocytes by adding 7.5% ethylene glycol 
(EG)/7.5% dimethyl sulfoxide (DMSO) and 15% EG/15% 
DMSO/0.5 M sucrose (S) into basal medium (BM; containing 
20% FCS) as equilibration solution (ES) and vitrification 
solution (VS), respectively. After thawing, IVF and other 
procedures, pregnancy was achieved. The protocol was suc-
cessfully applied in the cryopreservation of delipidate IVC 
porcine embryos [81]. Cuello et al [82] used 17% EG/17% 
DMSO/0.4 M S VS and achieved an 89.2% to 95.5% survival 
rate in expanded porcine blastocysts after thawing. In 2008, 
they further compared different concentrations of VS with 
40% EG with 15% EG/15% DMSO/0.4 M S, 16% EG/16% 
DMSO/0.4 M S, or 17% EG/17% DMSO/0.4 M S; and ob-
tained a similar survival rate between different VSs [83].
 Using vitrified SCNT embryos, live piglets were success-
fully generated by cloned and delipidated blastocysts [84] or 
morulas [85], which were cryopreserved with the same pro-
tocol of EG/15% DMSO/0.5 M S VS. Recently, Jia et al [86] 
used 15% EG for ES and 50 mg/mL PVP/35% EG/0.6 M S 
of VS to cryopreserve the zygotes, 2 and 4 cells of construct-
ed porcine embryos on Crotop carrier, and achieved a 97.3% 
to 98.1% survival rate and 21.1% to 35.8% developing rates 
of BC after thawing. The advance of porcine embryo vitrifi-
cation has been well reviewed by Du et al [87] recently, and 
further searching for better cryoprotectants, e.g., carboxylated 
epsilon-poly-L-lysine [88], together with endeavors to in-
crease the viability of SCNT embryos would certainly facilitate 
the application of GE in pig breeding.

Nonsurgical porcine embryo transfer
The NSET of BC or morula, but not 8-cell or 4-cell porcine 
embryos, when transferred to sedated sows resulted in live 
piglets born as first reported by Day’s research team in 1996 
[89]. The practice was subsequently used on sober sows, and 
farrowing rates of 17% and 41% were obtained when in vitro 
[90] and in vivo [91] BC were used, respectively. By using 
NSET, Cuello et al [92] transferred the vitrified BC into gilts, 
with 2 to 6 previous estrous cycles, at 5.5 to 6 days after show-
ing standing heat and found that the flexible catheter could 
not pass through the cervix in all the gilts with 2 previous 
cycles. In the gilts with 3 to 6 previous cycles, 80.9% reached 
the second or third quarter of the uterine horn, and among 
the gilts, 42.9% became pregnant and farrowed 3 to 9 piglets. 
Other attributes of a successful NSET include a suitable trans-
ferring volume of 1 to 2 mL medium [93]; dish warming of 
vitrified embryos performed better than syringe thawing 
[94], and a catheter should be inserted into the uterine horn 
at least 30 cm deep [93]. The recipient’s parity, when varied 
from 1 to 5, had little effect on the piglet production efficiency 
[95].
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 With respect to the farrowing rate, the synchronization of 
recipients with a day delay (81.1%) was better than a day 
early (0%), synchronous (61.3%) or 2-day delay (50%) if 
fresh embryo donors were transferred [96]. While transfer-
ring the vitrified/warmed expanded BC, 2-day and 1-day 
delays gave 27.3% and 25.0%, respectively [97]. Recently, a 
simplified NSET procedure was suggested by transferring 
the vitrified BC at the proximal site of the uterus (uterus 
body) to minimize the needs of experience and skill, but the 
farrowing rate was only 15.4% [98]. A more satisfactory re-
sult of a 42.9% farrowing rate and 6.4% piglet survival rate 
was obtained on a farm using the same approach when NSET 
vitrified BC and expended BC [99], and AI before NEST (on 
4 farms) increased the pregnancy rate and delivered live pig-
lets from vitrified/thawed embryos [96]. NSET has now 
become an essential reproductive biotechnology for improv-
ing the pregnancy/farrowing rate. 

CONCLUSION AND PROSPECTIVE

Successful farm-extending NBT depends on the synergistic 
effect of GE and reproductive biotechnologies and is currently 
ineffectual and has complications. The obstacles coupled with 
GE/iPSC, SCNT/IVC, cryopreservation, and NEST intensify 
existing vulnerabilities and magnify loss. Overcoming hur-
dles across piPSC-SCNT that involve the reprogramming of 
reconstructed embryos is currently the main concern, and 
improving the protocol of embryo cryopreservation/bank-
ing follows. To facilitate GE pig generation, efforts should 
not only be exerted on scientific due diligence and opera-
tional excellence but also on the feasibility of application on 
farms.
 In the wake of the food crisis fueled by climate change, 
GE food animals with sustainable traits will soon be consid-
ered non-GMOs and will be commercially used. Over the 
next decade, a significant number of GE pigs produced with 
economic, environmental, and social values are foreseeable 
for the marking of the fourth revolution of animal agriculture. 
Recent advances in biotechnology are offering techniques 
that optimize the efficiency of GE animal production; there-
fore, a substantially higher chance of a satisfactory outcome 
can be anticipated.
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