(マテ-8)

Prevention of ginsenoside-induced desensitization of Ca²⁺-activated CΓ current by microinjection of inositol hexakisphosphate in *Xenopus laevis* oocytes: involvement of GRK2 and β-arrestin I

Jun-Ho Lee, Sang Min Jeong, Byung-Hwan Lee, Hye-Sung Noh, Bo-Kyung Kim*, Jai-Il Kim*,

Hyewon Rhim**, Hyoung-Chun Kim†, Kyeong-Man Kim¶, and Seung-Yeol Nah§

From Research Laboratory for the Study of Ginseng Signal Transduction and Dept. of Physiology, College of Veterinary Medicine, *College of Medicine, Konkuk University, Seoul 143-701 Korea, *Dept. of Life Science, KJIST, Kwangju, Korea, **Biomedical Research Center, KIST, Seoul Korea, †College of Pharmacy, Kangwon National University, Chunchon, Korea, *College of Pharmacy, Chonnam National University, Kwangju, Korea 500-757

We demonstrated that ginsenosides, the active ingredient of Panax ginseng, enhance endogenous Ca²⁺-activated Cl⁻ currents via Gα_{a/11}-phospholipase C-β3 pathway in Xenopus oocytes. Moreover, prolonged treatment of ginsenosides induced Cl channel desensitization. However, it is not yet determined precisely what is molecular mechanisms are involved in ginsenoside-induced Cl⁻ channel desensitization. To provide answers to these questions, we investigated the changes in ginsenoside-induced Cl channel desensitization after intraoocyte injection of inositol hexakisphosphate (InsP₆), which is known to bind β-arrestins and interfere β-arrestins-induced receptor down-regulation, and cRNAs coding β-arrestin I/II and G-protein receptor kinase 2 (GRK2), which is known to phosphorylate G protein-coupled receptors (GPCRs) and attenuates agonist stimulations. When control oocytes were stimulated with ginsenosides, the second, third, and fourth responses to ginsenosides were 69.6 \pm 4.1, 9.2 \pm 2.3, and 2.6 \pm 2.2%, of the first responses, respectively and this desensitization lasts for up to 8 h. Preintraoocyte injection of InsP₆ before ginsenoside treatment restored ginsenoside effect to initial response level with concentration, time, and structurally specific manner, in that inositol hexasulfate (InsS₆) had no effect. EC₅₀ was 13.9 ± 8.7 μM. Injection of cRNA coding β-arrestin I but not β-arrestin II blocked InsP₆ effect on prevention of ginsenoside-induced Cl channel desensitization. Injection of cRNA coding GRK2 abolished ginsenoside effect enhancing CI current. However, GRK2-caused loss of ginsenoside effect on CI current was prevented by co-injection of GRK2 with GRK2-K220R, a dominant negative mutant of GRK that lacks kinase activity. Treatment of PMA, a PKC activator, inhibited ginsenoside-induced Cl⁻ current responses. IC₅₀ was 35.6 \pm 4.7 nM. Preintraoocyte injection of InsP₆ did not inhibit PMA-caused loss of ginsenoside-induced Cl⁻ current responses. These results indicate that ginsenoside-induced Cl⁻ channel desensitization is mediated via activation of GRK2 and β -arrestin I and that InsP₆ maintains ginsenoside effect on Cl⁻ channel by preventing arrestin I action in *Xenopus* oocytes.

REFERENCES

Nah, S.Y., (1997) Kor. J. Ginseng Sci. 21, 1-12

Nah, S.Y., and McCleskey, E. W. (1994) J. Ethnopharmacol. 42, 45-51

Choi, S., Rho, S. H., Jung, S. Y., Kim, S. C., and Nah, S. Y. (2001) *British J. Pharmacol.* 132, 641-648

Palczewski, K., Rispoli, G., and Detwiler, P. B. (1992) Neuron 8, 117-126

Address correspondence to: Dr. Seung-Yeol Nah, Research Laboratory for the Study of Ginseng Signal Transduction and Dept. of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 143-701 Korea. Tel: 02-450-4154; Fax: 02-450-2809; E-mail: synah@konkuk.ac.kr