• Title/Summary/Keyword: Microinjection

Search Result 202, Processing Time 0.021 seconds

Production of fluorescent green silk using fibroin H-chain expression system (피브로인 H-chain 재조합 단백질 발현시스템을 이용한 녹색형광실크 생산)

  • Kim, Seong Wan;Yun, Eun Young;Choi, Kwang-Ho;Kim, Seong Ryul;Park, Seung Won;Kang, Seok Woo;Goo, Tae Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.51 no.2
    • /
    • pp.153-158
    • /
    • 2013
  • To express green fluorescent protein in the cocoon of silkworm, we constructed the fibroin H-chain expression system to produce enhanced green fluorescent protein (EGFP) in the cocoon of transgenic silkworms. The EGFP fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, was designed to be secreted into the lumen of the posterior silk glands. The expression of the EGFP/H-chain fusion gene was regulated by the fibroin H-chain promoter. The use of the 3xP3-driven DsRed2 cDNA as a marker allowed us to rapidly distinguish transgenic silkworm. A mixture of the donor and helper vector was micro-injected into 1,200 eggs of bivoltin silkworms, Baegokjam. We obtained 8 broods. The cocoon displayed strong green fluorescence, proving that the fusion protein was present in the cocoon. Also, the presence of fusion proteins in cocoons was demonstrated by SDS-PAGE and immunoblotting. Accordingly, we suggest that the EGFP fluorescence silk will enable the production of the novel biomaterial based on the transgenic silk.

The Effects of the Expression of GATA Binding Protein 6 on Heart and Brain Development (심장과 뇌 발달에서 GATA6 유전자 발현 감소가 미치는 영향)

  • Seo, Jungwon
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1230-1234
    • /
    • 2015
  • GATA binding protein 6 (GATA6) is a transcription factor that is expressed in the early blastocyst stage and controls the expression of important genes in the differentiation and development of the heart, pancreas, and intestine. This study confirmed the role of GATA6 in cell differentiation and organ development using mouse embryonic stem cells and zebrafish, respectively. First, the mouse embryonic stem cells were differentiated into pacemaker cardiomyocytes. An RT-PCR analysis revealed that the expression of the GATA6 gene was greatly increased from day 4 of differentiation. The expression of GATA6 was upregulated prior to increased expression of NK2 homeobox 5 (Nkx2.5) and myocyte enhancer factor 2C (MEF2C), which are critical transcription factors involved in regulating heart formation. To examine the role of GATA6 in development, GATA6 morpholino was microinjected into zebrafish embryos. Knockdown of GATA6 expression significantly decreased the heart size and heart rate in the zebrafish compared to a control. In addition, the brains were degenerated in the GATA6 morpholino-injected zebrafish. Acridine orange staining showed that knockdown of GATA6 expression increased apoptotic cells in the brain. Interestingly, knockdown of GATA6 expression decreased apoptotic cells in the early bud stage. This study points to the importance of the GATA6 gene in heart and brain development.

Enhanced conversion to cotinine from nicotine by green tea extract (녹차 추출물에 의한 니코틴의 코티닌으로 전이 촉진)

  • Kyung, Yoon-Joo;Lee, Dong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.147-153
    • /
    • 2000
  • Cigarette smoking deals a harmful effect directly to smokers and even to non-smokers through environmental tobacco smoke. The major damaging component in cigarette smoke is nicotine which converts to various carcinogens. Among the carcinogenic metabolites, nitrosamine-4-(methylnitrosamino)-1- (3-pyridyl)-1- butanone (NNK) is responsible for many types of lung cancers. Recent studies report that activation of NNK is markedly inhibited in the presence of cotinine, a safer metabolite from nicotine. It is well known that tea extract have potentials to prevent cancers. This study aims to correlate green tea's potential for cancer prevention with an accelerated formation of cotinine. In the presence of tea extract, a nicotine to cotinine conversion was studied in established cell lines and xenopus oocytes. Among three lines of cell used, PLC/PRF5 and 293 cells showed a fast turnover from nicotine to cotinine while HepG2 cell line showed a marginal difference between groups treated and non-treated with tea extract. A microinjection procedure using Xenopus oocyte was utilized to probe for the effect of tea extract in accelerating nicotine conversion to cotinine. According to this procedure, tea extract's unusual potential for converting nicotine to cotinine is also substantiated. Overall, this present study indicated that tea extract have an unusual effect on conversion of nicotine to cotinine in cells.

  • PDF

Downstream Genes Regulated by Bcl2l10 RNAi in the Mouse Oocytes

  • Kim, Eun-Ah;Kim, Kyeoung-Hwa;Lee, Hyun-Seo;Lee, Su-Yeon;Kim, Eun-Young;Seo, You-Mi;Bae, Jee-Hyeon;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Previously, we have shown that Bcl2l10 as a member of Bcl-2 family, key regulators of the apoptotic process, is dominantly expressed in oocytes of ovary but several member of the Bcl-2 family are not expressed in oocytes. Recent our studies had been processed about roles and regulatory mechanisms of Bcl2l10 in oocytes. Microinjection of Bcl2l10 RNAi into the cytoplasm of germinal vesicle oocytes resulted in metaphase I (MI) arrest and exhibited abnormalities in their spindles and chromosome configurations (Yoon et al., 2009). The present study was conducted to elucidate the downstream genes regulated by Bcl2l10 and signaling networks in Bcl2l10 RNAi microinjected oocytes by using microarray analysis. Surprisingly, we found that a large proportion of genes regulated by Bcl2l10 RNAi were involved in the cell cycle and actin skeletal system regulation as important upstream genes of Bcl2l10. Among the transcripts with highly significant fold changes more than 2-fold, Tpx2 and Cep192 are 16.1- and 8.2-fold down regulated respectively by Bcl2l10 RNAi. Tpx2 and Cep192 are known as cofactors that control Aurora A kinase activity and localization. Therefore, we concluded that Bcl2l10 may have important roles during oocyte meiosis as functional upstream regulator of Tpx2 and Cep192.

Isolation of Bovine Spermatozoal Components by Physical or Chemical Treatments (물리.화학적 처리에 의한 소 정자세포구성분의 분리)

  • 최승철;천장혜;이상호
    • Korean Journal of Animal Reproduction
    • /
    • v.17 no.4
    • /
    • pp.339-346
    • /
    • 1994
  • An understanding of the structure and function of mammalian spermatozoa requires the iso-lation of these components. In this study, frozen-thawed bovine spermatozoa were treated by physical treatments (vortexing, 26 gauge needle, strained 26 gauge needles and freezing-thawing) or chemical treatments (trypsin, dithiothreitol, sodium dodecylsulfate and $\beta$-mercaptoethanoJ) to yield free heads and tails. The most effective treatment was repeated pumping of sperm suspension through a strained 26 gauge needle conneted to a syringe. Spermatozoa by this treatment were mainly broken at the junction of the head and the tail, resulting in 90-100% yields. Also, sperm head surface did not modify during strained 26 gauge needle treatment when either spermatozoa or sperm heads were incubated in 250${\mu}\textrm{g}$/ml of FITC-UEA 1 for 1 h at room temperature to detect the modification of sperm surface components. Other physical treatments were less efficient for the breakdown of spermatozoa. The effects of chemical treatments on bovine spermatozoa are not noticeable. Dissected sperm heads and tails should be fractional leading to nearly pure components by sucrose gradient centrifugation at 1,000 rpm for 15 min. The result suggest that the established method may be useful for the biochemical study of spermatozoal components, and the understanding of oocyte activation mechanism either by spermatozoal components during fertilization or microinjection of isolated components.

  • PDF

Effect of Hormone Treatments during Maturation on Calcium Response and In Vitro Development of Bovine Embryos (체외성숙 동안에 호르몬 처리에 따른 Calcium 반응과 체외발달에 미치는 영향)

  • 공일근;이은봉
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.3
    • /
    • pp.303-310
    • /
    • 1997
  • 소 난포란의 체외성숙시 성숙배지에 FSH 및 LH의 첨가가 체외성숙난자의 calcium 반응과 체외수정란의 발달에 미치는 영향을 조사하였다. 난포란의 체외성숙은 TCM199을 기초로 한 4가지의 배양조건 하에서 : 1) 0.5$\mu\textrm{g}$/ml FSH+5$\mu\textrm{g}$/ml LH, 2) 0.5$\mu\textrm{g}$/ml FSH, 3) 5$\mu\textrm{g}$/ml LH 및 4) 무 호르몬 첨가구로서 5% CO2에 24시간 동안 체외성숙을 유도하였다. 체외성숙 24기간째에 난포란의 과립막세포는 1ml PB1+에서 4분 동안 vortexing을 하여 완전히 제거하였다. 세포 내 calcium 반응을 측정하기 위하여 2mM Fura-2 AM ester 및 0.02% Pluronic F-127가 첨가된 PB1-용액에 39$^{\circ}C$ in cubator에서 40분 동안 배양하였다. 30${\mu}\ell$ M2 medium drop을 30mm plastic dish에 만들어 20$\times$ 형광대물렌즈가 장착된 Nikon Diaphot 현미경의 장착된 Nikon Diaphot 현미경의 warm stage에 설치하였다. 세포 내 calcium 방출을 자극하기 위하여 난자에 25mM inositol 1, 4, 5-trasphophate(IP3)로 1.21kV/cm의 전기자극 또는 20mM ryanodine으로 미세주입을 실시하였다. 이러한 처리를 하지 않은 난자는 체외수정 후 CR1aa와 BRL monolayers의 공배양조건 하에서 체외발달을 유도하였다. 분할율(Day 2)과 배반포기발달율(Day 9)을 조사하였다. FSH와 LH의 처리구에서 IP3 또는 ryanodine으로 자극된 난자(1.79$\pm$0.05, 1.66$\pm$0.06)는 FSH, LH 및 무 호르몬처리구에 비하여 유의적으로 높은 calcium 반응을 보였다(1.00$\pm$0.03, 1.28$\pm$0.04, and 0.53$\pm$0.02 in IP3 elctroporation; 0.68$\pm$0.05, 1.03$\pm$0.05, and 0.47$\pm$0.04 in ryanodine microinjection). FSH와 LH, FSH, LH처리구에서 분할율(87.9, 71.5 및 75.6%)은 무 호르몬처리구(60.7%)(P<0.05)에 비하여 유의적으로 높았으며, FSH와 LH처리구(29.3%)에서의 배반포기 발달율은 FSH, LH 처리구뿐만 아니라 무 호르몬처리구보다 유의적으로 높았다(16.5, 19.0 and 9.8%)(P<0.05). Bovine FSH 및 Ovine FSH의 처리구에서의 calcium 반응은 유의적인 차이가 없었다(1.72$\pm$0.05, 1.61$\pm$0.06). 또한 분할율(82.2 and 84.0%) 및 배반포기(27.8 and 27.1%) 발달율도 bovine 및 ovine FSH처리구간에는 유의적인 차이가 없었다. 이상의 결과에서 전기자극에 의한 세포 내 calcium 반응은 체외성숙배지에 첨가하는 호르몬의 처리에 따라서 유의적인 변화를 보였다. 비록 분할율은 처리구간에 유의적인 차이가 없었지만 배반포기 발달율은 FSH와 LH 공동처리구에서 FSH, LH 단독처리구 및 무 호르몬처리구에 비하여 유의적으로 높은 발달율을 보였다. 체외성숙기간에 FSH와 LH의 공동첨가는 체외성숙 및 체외발달의 생리적인 교정을 위하여 요구되는 것으로 사려된다.

  • PDF

Analysis of Transgenic Mouse, for the Production of Immunodeficiency Animals (면역결핍동물의 생산을 위한 형질전환생쥐의 분석)

  • 나루세겐지;양정희;이승현;최화식;이성호;박창식;진동일
    • Korean Journal of Animal Reproduction
    • /
    • v.27 no.2
    • /
    • pp.179-185
    • /
    • 2003
  • To determine whether the diphtheria toxin-A (DT) gene disrupts development of thymocytes in transgenic animal, the DT-A gene was used for the production of transgenic mice directed by proximal Ick promoter sequences. Two transgenic founder mice that contained several copies of transgene were produced by DNA microinjection and integration of transgene in transgenic mice was confirmed by PCR and Southern blotting analysis. Transgenic $F_1$ and $F_2$ mice were produced by outbreeding of founder and $F_1$ mice to investigate expression of transgene and phenotypes in transgneic mice. Expression of the diphtheria toxin gene was confirmed in thymus, spleen and liver of transgenic mice by RT-PCR. In circulating blood of transgenic mice, lower number of circulating white blood cells and platelets were observed compared with that of normal mice. In addition, transgneic mice had reduced number of circulating peripheral T-cells analyzed by FACS with anti-CD3 antibody. The data in these transgenic mice indicate that DT gene can play a disruptive role in developing thymocytes of transgenic mice resulted in lower number of T-cells that can be applicable to a wide range of tissues in other animals.

Specific Effects on Monocular OKN Directional Asymmetry of Unilateral Microinjections of GABA Antagonist into the Mesencephalic Structures in the Chicken (OKN을 유발하는 단축 Mesencephalic 구조에 GABA Antagonist를 미량 주입할 때의 닭의 OKN 방향적 불균형성에 관한 특수효과)

  • 김명순
    • The Korean Journal of Zoology
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 1996
  • The SR 95531, a GABA antagonist was microinjected into either the pretectum nuclei (nucleus Superficialis Synencephali nSS) or the nBOR (nucleus Ectomammilaris nEM) of chickens. Monocular optokinetic nystagmus (01(N) was reorded by the search coil technique before and after unilateral intracerebral drug administration. Unilateral microinjections of SR 95531 into either the nSS or nEM induce a reversible increase of gain in OKN directed by contralateral eye for both directions of stimulation. The administration into the nSS increased directional asymmetry by increasing the T~ component velocity gain more strongly than the N-T component velocity gain. On the other hand, the unilateral administration of the drug into the nEM suppressed the diretional O1(N asymmetry by increasing the N-T component velocity gain more strongly than the T-N component velocity gain. The nSS seems especially involved in monocular OKN in response to a T-N stimulation, while the nEM seems more involved in the OKN response to N-T stimulation. These results indicate that the drug suppresses GABAergic inhibition at the mesencephalic level. The increase in gain of OKN directed by the ipsilateral eye to microinjeded nuclei could account for the strong interactions existing between these two mesencephalic structures responsible for horizontal OKN.

  • PDF

Transgenic Efficiency of FoxN1-targeted Pig Parthenogenetic Embryos

  • Yeo, Jae-Hoon;Hwang, In-Sul;Park, Jae Kyung;Kwon, Dae-Jin;Im, Seoki;Park, Eung-Woo;Lee, Jeong-Woong;Park, Choon-Keun;Hwang, Seongsoo
    • Journal of Embryo Transfer
    • /
    • v.29 no.4
    • /
    • pp.339-344
    • /
    • 2014
  • The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein (Cas9) system can be applied to produce transgenic pigs. Therefore, we applied CRISPR/Cas9 system to generate FoxN1-targeted pig parthenogenetic embryos. Using single guided RNA targeted to pig FoxN1 genes was injected into cytoplasm of in vitro matured oocyte before electrical activation. In results, regardless of the concentrations of vector, the cleavage rate were significantly (p<0.05) decreased ($4ng/{\mu}l$, 51.24%; $8ng/{\mu}l$, 40.88%; and $16ng/{\mu}l$; 45.22%) compared to no injection group (70.44%). The blastocyst formation rates were also decreased in vector injected 3 groups ($4ng/{\mu}l$, 7.96%; $8ng/{\mu}l$, 6.4%; and $16ng/{\mu}l$; 9.04%) compared to no injection group (29.07%). In addition, the blastocyst formation rates between sham injected group (13.51%) and no injection group (29.07%) also showed significant difference (p<0.05). The mutation rates were comparable between groups ($4ng/{\mu}l$, 18.4%; $8ng/{\mu}l$, 12.5%; and $16ng/{\mu}l$; 20.0%). The sequencing analysis showed that blastocysts derived from each group were successfully mutated in FoxN1 loci regardless of the vector concentrations. However, the deletion patterns were higher than the patterns of point mutation and insertion regardless of the vector concentrations. In conclusion, we described that cytoplasmic microinjection of FoxN1-targeted CRISPR/Cas9 vector could efficiently generate transgenic pig parthenogenetic embryos in one-step.

Production of the yellow fluorescent silk using the fibroin heavy chain protein expression system in transgenic silkworm (피브로인 H-chain 재조합 단백질 발현시스템을 이용한 황색형광실크의 제작)

  • Kim, Seong Wan;Choi, Kwang-Ho;Kim, Seong Ryul;Yun, Eun Young;Park, Seung Won;Kang, Seok Woo;Goo, Tae Won
    • Journal of Sericultural and Entomological Science
    • /
    • v.52 no.2
    • /
    • pp.102-109
    • /
    • 2014
  • We constructed the fibroin H-chain expression system to produce enhanced yellow fluorescent proteins (EYFP) in the silk of transgenic silkworm. Fluorescent silk could be made by fusing EYFP cDNA to the heavy chain gene and injecting it into a silkworm. The EYFP fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, was designed to be secreted into the lumen of the posterior silk glands. The expression of the EYFP/H-chain fusion gene was regulated by the fibroin H-chain promoter. The yellow fluorescence proving that the fusion protein was present in the silk. Accordingly, we suggest that the EYFP fluorescence silk will enable the production of novel biomaterial based on the transgenic silk.