• Title/Summary/Keyword: Microclimate Data

Search Result 86, Processing Time 0.032 seconds

A Study of the Urban Tree Canopy Mean Radiant Temperature Mitigation Estimation (도시림의 여름철 평균복사온도 저감 추정 연구)

  • An, Seung Man;Son, Hak-gi;Lee, Kyoo-Seock;Yi, Chaeyeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.44 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • This study aimed to estimate and evaluate the thermal mitigation of the urban tree canopy on the summer outdoor environment by quantitative use of mean radiant temperature. This study applied the SOLWEIG model based $T_{mrt}$ comparison method by using both (1) urban tree canopy presence examples and (2) urban tree canopy absence examples as constructed from airborne LiDAR system based three-dimensional point cloud data. As a result, it was found that an urban tree canopy can provide a decrease in the entire domain averaged daily mean $T_{mrt}$ about $5^{\circ}C$ and that the difference can increase up to $33^{\circ}C$ depending both on sun position and site conditions. These results will enhance urban microclimate studies such as indices (e.g., wind speed, humidity, air temperature) and biometeorology (e.g., perceived temperature) and will be used to support forest based public green policy development.

Design of Energy Model of Greenhouse Including Plant and Estimation of Heating and Cooling Loads for a Multi-Span Plastic-Film Greenhouse by Building Energy Simulation (건물에너지시뮬레이션을 활용한 연동형 온실 및 작물에너지모델 설계 및 이의 냉·난방부하 산정)

  • Lee, Seung-No;Park, Se-Jun;Lee, In-Bok;Ha, Tae-Hwan;Kwon, Kyeong-Seok;Kim, Rack-Woo;Yeo, Uk-Hyeon;Lee, Sang-Yeon
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • The importance of energy saving technology for managing greenhouse was recently highlighted. For practical use of energy in greenhouse, it is necessary to simulate energy flow precisely and estimate heating/cooling loads of greenhouse. So the main purpose of this study was to develope and to validate greenhouse energy model and to estimate annual/maximum energy loads using Building Energy Simulation (BES). Field experiments were carried out in a multi-span plastic-film greenhouse in Jeju Island ($33.2^{\circ}N$, $126.3^{\circ}E$) for 2 months. To develop energy model of the greenhouse, a set of sensors was used to measure the greenhouse microclimate such as air temperature, humidity, leaf temperature, solar radiation, carbon dioxide concentration and so on. Moreover, characteristic length of plant leaf, leaf area index and diffuse non-interceptance were utilized to calculate sensible and latent heat exchange of plant. The internal temperature of greenhouse was compared to validate the greenhouse energy model. Developed model provided a good estimation for the internal temperature throughout the experiments period (coefficients of determination > 0.85, index of agreement > 0.92). After the model validation, we used last 10 years weather data to calculate energy loads of greenhouse according to growth stage of greenhouse crop. The tendency of heating/cooling loads change was depends on external weather condition and optimal temperature for growing crops at each stage. In addition, maximum heating/cooling loads of reference greenhouse were estimated to 644,014 and $756,456kJ{\cdot}hr^{-1}$, respectively.

An Optimum Scale for Topoclimatic Interpolation of Daily Minimum Temperature in Complex Terrain (일 최저기온 공간내삽을 위한 지형기후학적 최적 공간규모)

  • 정유란;서희철;윤진일;이광회
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.5 no.4
    • /
    • pp.261-265
    • /
    • 2003
  • Cold air accumulation plays a critical role in formulating daily minimum temperature in complex terrain on radiative cooling nights, and spatial interpolation can be improved by accommodating this important topoclimatic variable. Little is known about the spatial scale for computing cold air accumulation which influences daily minimum temperature. Air temperature was measured at 10-minute intervals during September 2002- February 2003 at eight locations within a 1 by 1 km hilly orchard area. Minimum temperature data for suspected radiative cooling nights were collected, and the deviations from reference observations at a near-by KMA automated weather station were calculated. A digital elevation model with a 10m cell size was used to calculate the cold air accumulation at 8 locations. Zonal averages of the cold air accumulation were computed for each location by increasing the cell radius from 1 to 10. Temperature deviations were regressed to a common logarithm of the smoothed averages of cold air accumulation to derive a linear relationship between the local temperature deviation and the site topography. The highest coefficient of determination ($r^2$ = 0.78) was found at a cell radius of 5, which corresponds to an approximately 1 ha boundary surrounding the point of interest.

A Case Study of Human Thermal Sensation (Comfort) in Plastic Houses (온실시설내 인간 열환경지수(열쾌적성)에 대한 사례연구)

  • Jung, Leeweon;Jin, Younghwan;Jeun, Yoona;Ko, Kyuman;Park, Hyungwook;Park, Sookuk
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1115-1129
    • /
    • 2016
  • To analyze human thermal environments in protected horticultural houses (plastic houses), human thermal sensations estimated using measured microclimatic data (air temperature, humidity, wind speed, and solar and terrestrial radiation) were compared between an outdoor area and two indoor plastic houses, a polyethylene (PE) house and a polycarbonate (PC) house. Measurements were carried out during the daytime in autumn, a transient season that exhibits human thermal environments ranging from neutral to very hot. The mean air temperature and absolute humidity of the houses were $14.6-16.8^{\circ}C$ (max. 22. $3^{\circ}C$) and $7.0-12.0g{\cdot}m^{-3}$ higher than those of the outdoor area, respectively. Solar (K) and terrestrial (L) radiation were compared directionally from the sky hemisphere (${\downarrow}$) and the ground hemisphere (${\uparrow}$). The mean $K{\downarrow}$ and $K{\uparrow}$ values for the houses were respectively $232.5-367.8W{\cdot}m^{-2}$ and $44.9-55.7W;{\cdot}m^{-2}$ lower than those in the outdoor area; the mean $L{\downarrow}$ and $L{\uparrow}$ values were respectively $150.4-182.3W{\cdot}m^{-2}$ and $30.5-33.9W{\cdot}m^{-2}$ higher than those in the outdoor area. Thus, L was revealed to be more influential on the greenhouse effect in the houses than K. Consequently, mean radiant temperature in the houses was higher than the outdoor area during the daytime from 10:45 to 14:15. As a result, mean human thermal sensation values in the PMV, PET, and UTCI of the houses were respectively $3.2-3.4^{\circ}C$ (max. $4.7^{\circ}C$), $15.2-16.4^{\circ}C$ (max. $23.7^{\circ}C$) and $13.6-15.4^{\circ}C$ (max. $22.3^{\circ}C$) higher than those in the outdoor area. The heat stress levels that were influenced by human thermal sensation were much higher in the houses (between hot and very hot) than in the outdoor (between neutral and warm). Further, the microclimatic component that most affected the human thermal sensation in the houses was air temperature that was primarily influenced by $L{\downarrow}$. Therefore, workers in the plastic houses could experience strong heat stresses, equal to hot or higher, when air temperature rose over $22^{\circ}C$ on clear autumn days.

Development of an Aerodynamic Simulation for Studying Microclimate of Plant Canopy in Greenhouse - (1) Study on Aerodynamic Resistance of Tomato Canopy through Wind Tunnel Experiment - (공기유동해석을 통한 온실내 식물군 미기상 분석기술 개발 - (1) 풍동실험을 통한 토마토 식물군의 공기저항 연구 -)

  • Lee In-Bok;Yun Nam-Kyu;Boulard Thierry;Roy Jean Claude;Lee Sung-Hyoun;Kim Gyoeng-Won;Lee Seung-Kee;Kwon Soon-Hong
    • Journal of Bio-Environment Control
    • /
    • v.15 no.4
    • /
    • pp.289-295
    • /
    • 2006
  • A computational fluid dynamics (CFD) numerical model has been developed to effectively study the ventilation efficiency of multi-span greenhouses with internal crops. As the first step of the study, the internal plants of the CFD model had to be designed as a porous media because of the complexity of its physical shapes. In this paper, the results of the wind tunnel tests were introduced to find the aerodynamic resistance of the plant canopy. The Seogun tomato was used for this study which made significant effects on thermal and mass exchanges with the adjacent air as well as internal airflow resistance. With the main factors of wind speed, static pressure, and density of plant canopy, the aerodynamic resistance factor was statically found. It was finally found to be 0.26 which will be used later as an input data of the CFD model. Moreover, the experimental procedure of how to find the aerodynamic resistance of various plants using, wind tunnel was established through this study.

Development and Validation of Inner Environment Prediction Model for Glass Greenhouse using CFD (CFD를 이용한 유리온실 내부 환경 예측 모델 개발 및 검증)

  • Jeong, In Seon;Lee, Chung Geon;Cho, La Hoon;Park, Sun Yong;Kim, Min Jun;Kim, Seok Jun;Kim, Dae Hyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • Because the inner environment of greenhouse has a direct impact on crop production, many studies have been performed to develop technologies for controlling the environment in the greenhouse. However, it is difficult to apply the technology developed to all greenhouses because those studies were conducted through empirical experiments in specific greenhouses. It takes a lot of time and cost to develop the models that can be applicable to all greenhouse in real situation. Therefore studies are underway to solve this problem using computer-based simulation techniques. In this study, a model was developed to predict the inner environment of glass greenhouse using CFD simulation method. The developed model was validated using primary and secondary heating experiment and daytime greenhouse inner temperature data. As a result of comparing the measured and predicted value, the mean temperature and uniformity were 2.62℃ and 2.92%p higher in the predicted value, respectively. R2 was 0.9628, confirming that the measured and the predicted values showed similar tendency. In the future, the model needs to improve by applying the shape of the greenhouse and the position of the inner heat exchanger for efficient thermal energy management of the greenhouse.

Using Digital Climate Modeling to Explore Potential Sites for Quality Apple Production (전자기후도를 이용한 고품질 사과생산 후보지역 탐색)

  • Kwon E. Y.;Jung J. E.;Seo H. H.;Yun J. I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.3
    • /
    • pp.170-176
    • /
    • 2004
  • This study was carried out to establish a spatial decision support system for evaluating climatic aspects of a given geographic location in complex terrains with respect to the quality apple production. Monthly climate data from S6 synoptic stations across South Korea were collected for 1971-2000. A digital elevation model (DEM) with a 10-m cell spacing was used to spatially interpolate daily maximum and minimum temperatures based on relevant topoclimatological models applied to Jangsoo county in Korea. For daily minimum temperature, a spatial interpolation scheme accommodating the potential influences of cold air accumulation and the temperature inversion was used. For daily maximum temperature estimation, a spatial interpolation model loaded with the overheating index was used. Freezing risk in January was estimated under the recurrence intervals of 30 years. Frost risk at bud-burst and blossom was also estimated. Fruit quality was evaluated for soluble solids, anthocyanin content, Hunter L and A values, and LID ratio, which were expressed as empirical functions of temperature based on long-term field observations. AU themes were prepared as ArcGlS Grids with a 10-m cell spacing. Analysis showed that 11 percent of the whole land area of Jangsoo county might be suitable for quality 'Fuji' apple production. A computer program (MAPLE) was written to help utilize the results in decision-making for site-selection of new orchards in this region.

Climatic Factors Affecting Bud Flush Timing of Pinus densiflora Provenances (소나무 산지의 개엽시기에 영향을 미치는 기후인자)

  • Kim, In Sik;Ryu, Keun Ok;Lee, Joo Whan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.229-235
    • /
    • 2012
  • This study was conducted to investigate the climatic factors affecting bud phenology of Pinus densiflora provenances. Data were collected from Jungseon, Chungju and Jeju plantations which were parts of the 11 provenance trials established by Korea Forest Research Institute in 1996. The 36 provenances were included in this trial ($33^{\circ}30^{\prime}{\sim}38^{\circ}08^{\prime}$ in latitude and $126^{\circ}30^{\prime}{\sim}129^{\circ}20^{\prime}$ in longitude). The bud swelling date and bud burst date of the provenances were investigated from March to May in 2004 in two-day interval. The four geographic factors and fifteen climatic factors of the test sites and provenances were considered in this study. Canonical correlation analysis was conducted to examine the major factors affecting the bud phenology. Our results suggested that the major factors affecting the timing of bud swelling and burst are the differences in latitude, longitude, extremely low temperature (during December-February), extremely high temperature (during November-February) and annual mean growing days between test plantation and provenance. The provenances with lower winter temperature than that of plantation showed the faster bud swelling and bud burst. Based on these results, the implication on the seed transfer of P. densiflora was discussed.

Air Temperature Profile within a Partially Developed Paddy Rice Canopy (생육중기 벼 군락 내 기온의 연직구조)

  • Yoon Young-Kwan;Yun Jin-Il;Kim Kyu-Rang;Park Eun-Woo;Hwan Heon;Cho Seong-In
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.4
    • /
    • pp.204-208
    • /
    • 2000
  • Little information is available for the temporal variation in air temperature profile within rice canopies under development, while much works have been done for a fully developed canopy. Fine wire thermocouples of 0.003 mm diameter (chromel-constantan) were installed at 10 vertical heights by a 10 cm step in a paddy rice field to monitor the air temperatures over and within the developing rice canopy from one month after transplanting (June 29) to just before heading (August 24). According to a preliminary analysis of the data, we found neither the daytime temperature maximum nor the night time minimum at the active radiation surface (the canopy height with maximum leafages) during this period, which is a typical profile of a fully developed canopy. Air temperature within the canopy never exceeded that above the canopy at 1.5 m height during the daytime. Temporal march of the within-canopy profile seemed to be controlled mainly by the ambient temperature above the canopy and the water temperature beneath the canopy, and to some extent by the solar altitude, resulting in alternating isothermal and inversion structures.

  • PDF

Preservation and Management Plan through the Analysis of Plant Resources and Functions of Algific Talus Slope as a Climate Change Shelter (기후변화 피난처로서 풍혈지의 식물자원 및 기능 분석을 통한 보전 및 관리방안)

  • Tae-Young Hwang;Jong-Won Lee;Ho-Geun Yun;Wan-Geun Park;Jong-Bin An
    • Korean Journal of Plant Resources
    • /
    • v.36 no.2
    • /
    • pp.133-171
    • /
    • 2023
  • This study was conducted to prepare basic data by analyzing the biological values and environmental factors of algific talus slope in order to respond to climate change due to the greenhouse effect, and to establish plans for forest biodiversity preserving and managing. Meteorological information was measured and the flora of vascular plants were investigated for six algific talus slope by seasonally from 2020 to 2021. As a result of the investigation, the temperature of all 6 algific talus slope was lower than that of the area where the algific talus slope was located in summer, and flora was 101 families, 350 genera, 621 species, 18 subspecies, 57 variants, 7 varieties, 703 taxa. In sum, it is judged that the algific talus slope has sufficient reasons and value to be preserved because it has excellent micrometeorological value from the cold wind blowing in summer and phytogeographical value in which various plants live in a small area. However, in spite of such an important area, the management of algific talus slope is insufficient, and the algific talus slope is damaged or the ecosystem of the algific talus slope is disturbed. Therefore, it is necessary to establish a systematic conservation and management plan by designating algific talus slope as a forest genetic resource reserve and OECM.