• 제목/요약/키워드: Microchannel Reactor

검색결과 13건 처리시간 0.026초

전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석 (Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor)

  • 나종걸;정익환;;박성호;박찬샘;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제52권6호
    • /
    • pp.826-833
    • /
    • 2014
  • 해양 중소규모 가스전의 경제성에 대한 화두가 던져진 이후 전통 석유의 가격변동과 세계적인 환경규약 등에 맞물려 석유화학관련 산업계에서는 이를 효과적으로 대처하고 천연가스를 활용할 수 있는 공정을 개발하고자 하였다. 이에 Fischer-Tropsch 반응을 기반으로 하는 해상 GTL 공정(offshore gas-to-liquid process)이 제안되었고 부유시스템 platform으로 공정을 적용시키고자 마이크로채널 반응기가 떠오르고 있다. 본 논문에서는 단일 마이크로채널 반응기를 Fischer-Tropsch 반응을 기반으로 하여 Matlab과 ASPEN Hysys를 연동하여 모사하고 이로 얻어진 반응열을 도입해 상용 전산유체역학(computational fluid dynamics, CFD) 소프트웨어인 ANSYS fluent로 멀티 마이크로채널 반응기 모델을 제작하였다. 그리고 4가지의 설계변수인 냉각채널 넓이, 높이, 냉각채널과 반응채널의 간격, 냉각채널 간의 간격을 설정하고 이들의 변화에 따른 열유동을 3가지의 변수인 열유속, 냉각 및 반응채널의 최대온도의 변화를 시각화하여 그 경향성을 확인하였다. 경향성 분석 결과, 냉각채널의 넓이와 높이는 짧을수록 총 열유속이 높아졌으며 최대온도 역시 높아졌으나 냉각채널과 반응채널의 간격은 열유동에 거의 영향을 미치지 못하였다. 냉각채널 간의 간격은 짧을수록 총 열유속이 높아졌으며 최대온도는 낮아졌다. 따라서 적절한 냉각채널의 넓이와 높이를 제안하고 짧은 간격의 냉각채널 구조를 도입하여 반응채널의 열량을 충분히 제거할 수 있는 반응기설계에 대한 휴리스틱을 제안할 수 있었다. 이처럼 멀티채널 반응기의 모델을 설계하고 이로부터 적절한 변수를 선택해 그 경향성을 확인할 수 있는 방법을 통해 설계 단계에서부터 적절한 반응기 구조에 대한 제안을 하는데 도움을 줄 것이다.

마이크로 Pin Fin 화학반응기에서 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 연구 (Pressure Drop and Catalytic Dehydrogenation of NaBH4 Solution Across Pin Fin Structures in a Microchannel Reactor)

  • 정기문;최석현;이희준
    • 대한기계학회논문집B
    • /
    • 제41권6호
    • /
    • pp.381-387
    • /
    • 2017
  • 수소화붕소나트륨은 안정적으로 수소가 저장된 물질이며, 촉매반응으로 수소를 용이하게 분리할 수 있다. 본 연구에서는 탈수소 반응률을 높이기 위해 비표면적이 큰 마이크로 pin fin 화학반응기를 제작하여 수소화붕소나트륨 수용액의 압력강하 및 탈수소 화학반응 실험을 수행하였다. 나노공정을 이용하여 실리콘웨이퍼에 높이 $300{\mu}m$, 직경 $50{\mu}m$의 pin fin을 축간격 1.3, 횡간격 1.5으로 엇갈림 배열하였다. 수소화붕소나트륨 수용액은 5~20 wt.% 농도로 Re수 1~60으로 공급되었으며, 초고속카메라를 이용하여 탈수소반응 유동양상을 관찰하였다. 실험 결과 마이크로 pin fin 화학반응기는 동일 수력학적직경을 가지는 직관 마이크로채널 화학반응기보다 화학반응 성능이 2.45배 우수한 반면, 압력강하는 1.5배 증가하였다.

마이크로채널 탈수소 화학반응기에서 수소화붕소나트륨 수용액의 계면마찰에 대한 실험연구 (Experimental Study of Interfacial Friction in NaBH4 Solution in Microchannel Dehydrogenation Reactor)

  • 최석현;황승식;이희준
    • 대한기계학회논문집B
    • /
    • 제38권2호
    • /
    • pp.139-146
    • /
    • 2014
  • 수소화붕소나트륨은 수소 에너지를 저장 및 공급할 수 있는 안정된 금속 물질이다. 본 논문에서는 탈수소 화학반응기 유로 설계를 위해 수력학적 직경 $461{\mu}m$를 가지는 마이크로채널에서 수소화붕소나트륨 수용액의 탈수소 화학반응이 일어날 때 수용액과 수소 기체 간의 이상유동 계면마찰에 대하여 실험연구를 수행하였다. 화학반응기 마이크로채널은 직사각 단면으로 높이 $300{\mu}m$, 너비 1 mm, 길이 50 mm 로 실리콘 웨이퍼에 공정되었으며, 가수분해 촉진을 위해 루테늄을 촉매로서 100 nm 두께로 채널 표면에 증착하였다. 가시화 결과 Re 수 30 이하에서 기포유동 양상이 관측되었다. 이상마찰승수는 기포율에 선형적으로 비례하며, 탈수소 화학반응기를 설계할 때 계면마찰에 영향을 미치는 수용액의 초기농도, 촉매 화학반응률, 체류시간을 고려해야 된다.

전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기 반응채널구조에 따른 열적 효과 분석 (Analysis on Thermal Effects of Process Channel Geometry for Microchannel Fischer-Tropsch Reactor Using Computational Fluid Dynamics)

  • 이용규;정익환;나종걸;박성호;;한종훈
    • Korean Chemical Engineering Research
    • /
    • 제53권6호
    • /
    • pp.818-823
    • /
    • 2015
  • 본 연구에서는 전산유체역학(CFD)을 이용하여 마이크로채널 내부의 Fischer-Tropsch(FT) 반응을 모사하였고, 나아가 반응채널의 너비와 높이, 냉각채널과의 거리 그리고 채널 사이 간격을 변수로 두고 채널 내부 온도에 대해 민감도 분석을 수행하였다. 마이크로채널 반응기는 채널 간의 열교환을 고려하기 위한 5개의 반응채널과 냉각채널을 대신한 냉각면으로 이루어져 있으며 채널의 높이와 너비를 포함한 변수들의 길이는 0.5 mm ~ 5.0 mm 범위에서 설정하였다. 반응물로는 $H_2$와 CO의 혼합기체($H_2/CO$ molar ratio=2)를 사용하였으며 반응기의 운전 조건은 $GHSV=10000h^{-1}$, 압력 20 bar와 온도 483 K($210^{\circ}C$)이다. 민감도 분석의 결과로 반응채널 내부의 최대 온도는 채널의 높이에 비례하며 너비에 대해서는 특정 길이 이상에서 영향을 받지 않는 것을 확인하였으며 이 중에 냉각채널과의 거리와 채널 사이 간격은 채널 내부 온도에 거의 영향을 미치지 않았다. 따라서 채널 레이아웃에서 반응채널의 높이는 짧을수록(약 2 mm 이하), 너비는 길수록(약 4 mm 이상) 열제거뿐만 아니라 생산량 측면에서 이득을 얻을 수 있었다.

마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성에 관한 수치해석 연구 (Numerical Study of Heat and Mass Transfer Characteristics in Microchannel Steam Methane Reforming Reactor)

  • 전승원;이규정;조연화;문동주
    • 대한기계학회논문집B
    • /
    • 제36권9호
    • /
    • pp.885-894
    • /
    • 2012
  • 마이크로채널 메탄 수증기 개질 반응기의 열 및 물질 전달 특성을 이해하기 위한 수치해석 연구를 수행하였다. Rh-촉매의 메탄 수증기 개질 반응과 Pt-촉매의 메탄 연소 반응을 함께 모델링하였다. 화학 반응의 반응 속도를 해석 모델에 적용하였다. 접촉시간, 평행류 대향류 등 유동 패턴, 채널 크기 등이 개질 성능과 온도 분포에 미치는 영향을 관찰하였다. 평행류와 대향류는 서로 반대되는 온도 분포를 갖게 되고, 그로 인해 서로 다른 반응 속도와 화학종 몰분율을 나타낸다. 접촉시간이 짧아지고 채널 크기가 증가할수록 촉매층과 혼합물 유동 사이의 물질 전달이 제한되어 개질 성능은 감소하게 된다.

시료주입시 기포발생이 억제된 반응조 형태의 중합효소연쇄반응용 PDMS/유리 바이오칩 (PDMS/Glass Serpentine Microchannel Chip for PCR with Bubble Suppression in Sample Injection)

  • 조철호;조웅;황승용;안유민
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1261-1268
    • /
    • 2006
  • This paper reports low-cost microreactor $(10{\mu}{\ell})$ biochip for the DNA PCR (polymerase chain reaction). The microbiochip $(20mm{\times}28mm)$ is a hybrid type which is composed of PDMS (polydimethylsiloxane) layer with serpentine micochannel $(360{\mu}m{\times}100{\mu}m)$ chamber and glass substrate integrated with microheater and thermal microsensor. Undesirable bubble is usually created during sample loading to PMDS-based microchip because of hydrophobic chip surface. Created bubbles interrupt stable biochemical reaction. We designed improved microreactor chamber using microfluidic simulation. The designed reactor has a coner-rounded serpentine channel architecture, which enables stable injection into hydrophobic surface using micropipette only. Reactor temperature needed to PCR reaction is controlled within ${\pm}0.5^{\circ}C$ by PID controller of LabVIEW software. It is experimentally confirmed that SRY gene PCR by the fabricated microreactor chip is performed for less than 54 min.

자동차탑재용 연료개질시스템을 위한 마이크로채널개발 (Microchannel Development for Fuel Processor of Automotive Applications)

  • 배중면
    • 한국전기화학회:학술대회논문집
    • /
    • 한국전기화학회 2003년도 연료전지심포지움 2003논문집
    • /
    • pp.89-95
    • /
    • 2003
  • Fuel processing is an enabling technology for faster commercialization under lack of hydrogen infrastructures. It has been reported that the development of novel catalysts that are active and selective for hydrocarbon reforming reactions. It has been realized, however, that with pellet or conventional honeycomb catalysts, the reforming process is mass transport limited. This paper reports the development of catalyst structures with microchannels that are able to reduce the diffusion resistance and thereby achieve the same production rate within a smaller reactor bed. These microchannel reforming catalysts were prepared and tested with natural gas and gasoline-type fuels in a microreactor (1-cm dia.) at space velocities of up to 250,000 per hour. These catalysts have also been used in engineering-scale reactors (10 kWe, 7-cm dia.) with similar product qualities. Compared to pellet catalysts. the microchannel catalysts enable a nearly 5-fold reduction in catalyst weight and volume.

  • PDF

마이크로채널 반응기를 이용한 강화된 저온 피셔-트롭쉬 합성반응의 전산유체역학적 해석 (Intensified Low-Temperature Fischer-Tropsch Synthesis Using Microchannel Reactor Block : A Computational Fluid Dynamics Simulation Study)

  • ;나종걸;박성호;정익환;이용규;한종훈
    • 한국가스학회지
    • /
    • 제21권4호
    • /
    • pp.92-102
    • /
    • 2017
  • 피셔-트롭쉬 합성반응은 CO와 H2의 혼합가스로 이루어진 합성가스를 부가가치가 높은 탄화수소 제품으로 변환시킨다. 본 논문에서는 저온 피셔-트롭쉬 합성반응과 단일, 다중 마이크로채널 반응기에 패킹시킨 촉매를 기반으로 강화된 반응조건의 열전달을 고려하여 전산유체역학 기반의 시뮬레이션을 진행하고 분석하였다. 단일채널모델을 통하여 CO 전환률이 ~65% 이상, $C_{5+}$ 선택도가 ~74% 이상을 달성하면서도 Co 기반의 super-active 촉매를 통해 GHSV를 $30000hr^{-1}$을 달성할 수 있음을 보였다. 다중 마이크로채널 반응기모델에서는 열전달 시뮬레이션을 동시에 해석하여, 3가지의 다른 반응기구조에 대해서, 직교류 wall boiling 냉매를 사용시 ${\Delta}T_{max}$가 23 K였으며 평행유동 subcooled 냉매와 평행유동 wall boiling 냉매의 경우 각각 15 K와 13 K의 ${\Delta}T_{max}$를 보였다. 반응기 전체적으로 498 - 521 K에서 온도제어가 가능했으며 계산된 사슬성장 가능성은 저온 피셔-트롭쉬 합성에 적합한 것으로 보인다.

Slip flow 해석을 위한 격자볼츠만 방법의 곡면처리기법 (CURVED BOUNDARY TREATMENT OF THE LATTICE BOLTZMANN METHOD FOR SLIP FLOW SIMULATIONS)

  • 정남균
    • 한국전산유체공학회지
    • /
    • 제19권3호
    • /
    • pp.77-84
    • /
    • 2014
  • The lattice Boltzmann (LB) method has been used to simulate rarefied gas flows in a micro-system as an alternative tool. However, previous results were mainly focused on a simple geometry with flat walls because the LB method is modeled on uniform Cartesian lattices. When previous boundary conditions for the microflows are applied to curved walls, the use of them requires approximation of the curved boundary by a series of stair steps, and introduces additional errors. For macroflows, no-slip curved wall boundary treatments have been developed remarkably in order to overcome these limits. However, the investigations for the slip curved wall boundary have rarely been performed for microflows. In this work, a curved boundary treatment of the LB method for a slip flow has been introduced. The results of the LB method for 2D microchannel and 3D microtube flows are in excellent agreement with the analytical solutions.