• Title/Summary/Keyword: Microcantilever-Based Sensor

Search Result 6, Processing Time 0.02 seconds

pH Measurements with a Microcantilever Array-Based Biosensor System

  • Hur, Shin;Jung, Young-Do
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.186-191
    • /
    • 2012
  • In this paper, we present a pH measurement method that uses a microcantilever-array-based biosensor system. It is composed of microcantilever array, liquid cell, micro syringe pump, laser diode array, position sensitive detector, data acquisition device, and data processing software. Four microcantilevers are functionalized with pH-sensitive MHA(mercaptohexadecanoic acid) as a probe, while three microcantilevers are functionalized with HDT(hexadecane thiol) as reference. We prepare PBS(phosphate buffered saline) solutions of different pH and inject them into the liquid cell with a predefined volumetric speed at regular time intervals. The functionalized mircocantilevers in the liquid cell deflect as a self-assembled monolayer on the microcantilever binds with probe molecules in the solution. The difference in deflection between the MHA-covered probe microcantilever and the HDT-covered reference microcantilever was used to compensate for thermal drift. The deflection difference clearly increases with increasing pH in the solution. It was shown that when the pH values of the PBS solutions are high, there were large variations in the deflection of microcantilevers, whereas there were small variations for low pH value. The experimental results show that the microcantilever array functionalized with MHA and HDT can detect pH value with good repeatability.

Fabrication and Characterization of Electrostatically Actuated Microcantilever Mass Sensors (정전기력으로 구동되는 마이크로 캔틸레버 질량 센서의 제작과 특성)

  • Lee, Jung-Chul;Choi, Bum-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • Microcantilevers have been actively used in probe-based microscopy and gravimetric sensing for biological or chemical analytes. To integrate actuation or detection schemes in the structure, typical fabrication processes include several photolithographic steps along with conventional MEMS fabrication. In this paper, a simple and straightforward way to fabricate and operate silicon microcantilever mass sensors is presented. The fabricated microcantilever sensors which can be electrostatically actuated require only two photolithographic steps. Resonant characteristics of fabricated microcantilevers are measured with a custom optical-lever and results show size-dependent quality factors. Using a $40\;{\mu}m$ long, $7\;{\mu}m$ wide, and $3\;{\mu}m$ thick cantilever, we achieved subfemtogram mass resolution in a 1 Hz bandwidth.

Quantitative Alpha Fetoprotein Detection with a Piezoelectric Microcantilever Mass Sensor (압전 마이크로캔틸레버 질량센서를 이용한 정량적 알파태아단백 검출)

  • Lee, Sangk-Yu;Cho, Jong-Yun;Lee, Yeol-Ho;Jeon, Sang-Min;Cha, Hyung-Joon;Moon, Wonk-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.487-493
    • /
    • 2011
  • Alpha fetoprotein(AFP), which is serological marker for hepatocellular carcinoma, was quantitatively measured by its normal concentration, 10 ng/ml, with a label-free piezoelectric microcantilever mass sensor. The principle of detection is based on changes in the resonant frequency of the piezoelectric microcantilever before and after target molecules are attached to it, and its resonant frequency is measured electrically using a conductance spectrum. The resonant frequency of the developed sensor is approximately 1.34 MHz and the mass sensitivity is approximately 175 Hz/pg. The sensor has high reliability as mass sensor by reducing the effect of surface stress on resonant frequency due to attached proteins. 'Dip and dry' technique was used to react the sensor with reagents for immobilizing AFP antibody on the sensor and detecting AFP antigen. The measured mass of the detected AFP antigen was 6.02 pg at the concentration of 10 ng/ml, and 10.67 pg at 50 ng/ml when the immunoreaction time was 10 min.

Analysis of Resonance Based Micromechanical Bio-Chemical Sensing Structures (공진 기반 마이크로기계 생화학 센싱 구조물의 해석)

  • Yeo, Min-Ku;Shin, Yoon-Hyuck;Yim, Hong-Jae;Lim, Si-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1767-1772
    • /
    • 2008
  • A microcantilever is a well-known MEMS structure for sensing bio-chemical molecules. When bio-chemical molecules are adsorbed on the microcantilever's surface, resonance frequency shift is generated. There are two issues in this phenomena. The first one is which one between mass change and surface stress change effects is more dominant on the resonance frequency shift. The second one is what will be the performance change when the boundary condition is changed from cantilevers to double clamped beams. We have studied the effect of surface stress change and compared it with that of mass change by using FEM analysis. Furthermore, for microstructures having different boundary conditions, we have studied Q-factor, which determines the detection limit of micro/nano mechanical sensors.

  • PDF

Quantitative Label-free Biodetection of Acute Disease Related Proteins Based on Nanomechanical Dynamic Microcantilevers

  • Hwang, Kyo-Seon;Cha, Byung-Hak;Kim, Sang-Kyung;Park, Jung-Ho;Kim, Tae-Song
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.3
    • /
    • pp.151-160
    • /
    • 2007
  • We report the label-free biomolecules detection based on nanomechanical micro cantilevers operated in dynamic mode for detection of two marker proteins (myoglobin and creatin kinase-MB (CK-MB)) of acute myocardical infarctions. When the specific binding between the antigen and its antibody occurred on the fuctionalized microcantilever surface, mechanical response (i.e. resonant frequency) of microcantilevers was changed in lower frequency range. We performed the label-free biomolecules detection of myoglobin and CK-MB antigen in the low concentration (clinical threshold concentration range) as much as 1 ng/ml from measuring the dynamic response change of micro cantilevers caused by the intermolecular force. Moreover, we estimate the surface stress on the dynamic microcantilevers generated by specific antibody-antigen binding. It is suggested that our dynamic microcantilevers may enable one to use the sensitive label-free biomolecules detection for application to the disease diagnosis system based on mechanical immuno-sensor.

Single Interaction Force of Biomolecules Measured with Picoforce AFM (원자 힘 현미경을 이용한 단일 생분자 힘 측정)

  • Jung, Yu-Jin;Park, Joon-Won
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.1
    • /
    • pp.52-57
    • /
    • 2007
  • The interaction force between biomolecules(DNA-DNA, antigen-antibody, ligand-receptor, protein-protein) defines not only biomolecular function, but also their mechanical properties and hence bio-sensor. Atomic force microscopy(AFM) is nowadays frequently applied to determine interaction forces between biological molecules and biomolecular force measurements, obtained for example using AFM can provide valuable molecular-level information on the interactions between biomolecules. A proper modification of an AFM tip and/or a substrate with biomolecules permits the direct measurement of intermolecular interactions, such as DNA-DNA, protein-protein, and ligand-receptor, etc. and a microcantilever-based sensor appeared as a promising approach for ultra sensitive detection of biomolecular interactions.