• Title/Summary/Keyword: Microbroth dilution method

Search Result 6, Processing Time 0.016 seconds

Antimicrobial Activity of Houttuynia cordata Ethanol Extract against Major Clinical Resistant Microorganisms (주요 임상 내성균에 대한 어성초 에탄올 추출물의 항균효과)

  • Hong, Seung Bok;Lee, Chun Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.3
    • /
    • pp.140-146
    • /
    • 2015
  • The increase in resistance by pathogenic bacteria to multiple antimicrobial agents has become a significant treat, as the effective antimicrobial agents available for the patients infected by such resistant bacteria are reduced, or even eliminated. Several natural plant extracts have exhibited antibacterial and synergistic activity against various resistant microorganisms. Houttuynia cordata is frequently used by many traditional medicine practicioners for its antimicrobial, antiviral, and anti-inflammatory properties. This study investigated the antibacterial effects of H. cordata extract against clinical multi-resistant bacteria, and compared the two methods used for the antimicrobial susceptibility testing. Thirty isolates of Methicillin-resistant Staphylococcus aureus (MRSA, 10), Vancomycin-resistant Enterococcus faecium (VRE, 10), Carbapenem-resistant Acinetobacter baumannii (CRAB, 10) were included in this study. The antibacterial effect of H. cordata was tested by disk diffusion and microbroth dilution methods as per CLSI guidelines. In disk diffusion, all isolates (30) showed no inhibition to 30,000 ug/mL of H. cordata. But in the microbroth dilution method, $MIC_{90}$ of H. cordata was 4,096 ug/mL, 8,192 ug/mL and 4,096 ug/mL in MRSA, VRE and CRAB, respectively. These results demonstrate that H. cordata exhibits antibacterial activity against MRSA, VRE and CRAB. Moreover, the microbroth dilution method is a more effective method than disk diffusion to evaluate the antibacterial activity of natural products. The Disk diffusion method used to evaluate the antibacterial activity of natural products required new standard guidelines including inoculum concentration of bacteria.

Evaluation of the Antibacterial Activity of Rhapontigenin Produced from Rhapontin by Biotransformation Against Propionibacterium acnes

  • Kim, Jeong-Keun;Kim, Na-Rae;Lim, Young-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.82-87
    • /
    • 2010
  • Biotransformation is often used to improve chemical activity. We evaluated the antimicrobial activity of rhapontigeuin, converted from rhapontin after treatment with Pectinex. Rhapontigenin showed 4-16 times higher antimicrobial activity than rhapontin. The activity was higher against Gram-positive strains than Gram-negative strains. Minimum inhibitory concentrations (MICs) of rhapontigenin, retinol, and five antibiotics were determined by the microbroth dilution method for antibiotic-sensitive and -resistant Propionibacterium acnes. We also investigated the in vitro antibacterial activity of rhapontigenin in combination with antibiotic against antibiotic-resistant P. acnes. The antibiotic combination effect against resistant P. acnes was studied by the checkerboard method. The combination formulations (rhapontigenin and clindamycin, retinol and clindamycin) showed synergistic effects on the inhibition of the growth of clindamycin-resistant P. acnes. It is predictable that the combination of antibiotics with rhapontigenin is helpful to treat acne caused by antibiotic-resistant P. acnes. The antibacterial activity of rhapontigenin was enhanced by biotransformation.

Use of a Sensitive Chemiluminescence-Based Assay to Evaluate the Metabolic Suppression Activity of Linezolid on Methicillin-Resistant Staphylococcus aureus Showing Reduced Susceptibility to Vancomycin

  • Komatsu, Mitsutakal;Tajima, Yutaka;Ito, Teruyo;Yamashiro, Yuichiro;Hiramatsu, Keiichi
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.7
    • /
    • pp.734-741
    • /
    • 2009
  • Recently, strains of methicillin-resistant Staphylococcus aureus (MRSA) with reduced susceptibility to vancomycin (VCM) have been clinically isolated. The antibacterial activity of a new drug, linezolid (LZD), in such a strain was evaluated by measuring bacterial metabolic activity. A total of 73 MRSA strains having various susceptibilities to VCM were subjected to a novel and highly sensitive chemiluminescence-based assay. LZD MIC in the tested strains, measured by the microbroth dilution method, was within the range 1-4 mg/l (mostly ${\leq}2$mg/l), except for one LZD-resistant strain (NRS127; MIC=7 mg/l), and showed no correlation with VCM resistance. The chemiluminescence assay demonstrated that bacterial metabolic activity was strongly suppressed with increasing LZD concentration. The chemiluminescence intensity curve had a low baseline activity without tailing in most strains. The present results suggest that LZD has strong antibacterial activity against MRSA strains, and would be effective for treatment of infections that are poorly responsive to VCM. The chemiluminescence assay facilitated sensitive and discriminative susceptibility testing within a relatively short time.

Screening of anti-candidiosis agent from medicinal and wild plants (Candidiosis 치료제 개발을 위한 약용 및 야생 식물의 항진균 활성의 검색)

  • 손호용;금은주;권윤숙;권기석;진익렬;권하영;권정숙;손건호
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.604-617
    • /
    • 2003
  • Candida albicans is one of the most common etiological agents in fungi-associated skin infections. There is an increase of candidiosis especially in the patient of acquired or induced immunodeficiency syndromes or in the event of long-term antibiotics and immuno-suppressor or cytotoxic therapies. To screen out reliable and effective anti-candidiosis agent, in this study, we have evaluated antifungal activity of 298 plant extracts against C. albicans. Based on the results of disc-paper method and determination of minimal inhibitory concentration, fifteen extracts were finally selected as possible sources of anti-candidiosis agent. Especially, six different plant extracts, such as Rubus parvifolius, Euphorbia pekinensis, Coptis chinensis, Eugenia aromaticum, Paeonia lactiflora var. hortensis and Paeonia suffruticosa showed strong antifungal activity against C. albicans, not to S. cerevisiae. These results suggested that medicinal and wild plants could be the potential source of antifungal agent.

Whole-Genome Sequencing-based Antimicrobial Resistance and Genetic Profile Analysis of Vibrio parahaemolyticus Isolated from Seafood in Korea (유통 수산물에서 분리한 Vibrio parahaemolyticus의 항생제 내성 및 전장 유전체 분석을 통한 유전적 특성 분석)

  • Gyeong Gyu Song;Hyeonwoo Cho;Yeona Kim;Beomsoon Jang;Miru Lee;Kun Taek Park
    • Journal of Food Hygiene and Safety
    • /
    • v.39 no.3
    • /
    • pp.231-238
    • /
    • 2024
  • Vibrio parahaemolyticus is a major seafood-borne pathogen commonly detected in marine environments. In Korea, V. parahaemolyticus-induced foodborne illnesses account for 7.5% of bacterial pathogen-related food poisonings. Moreover, the amount of antimicrobial agents used in aquatic cultures is continuously increasing. In this study, we isolated V. parahaemolyticus from seafood samples and performed antimicrobial susceptibility tests using the microbroth dilution method. Furthermore, using whole-genome sequencing, we identified antimicrobial resistance genes, virulence genes, and sequence types (STs). We could isolate V. parahaemolyticus from 47 (59.5%) of the 79 seafood samples we purchased from retail markets in Seoul and Chungcheong provinces. Antimicrobial susceptibility tests revealed that 2 and all of the 47 isolates were ampicillin-resistant (4.3%) and susceptible to all tested antimicrobial agents (100%), respectively. The genotype analysis revealed that all isolates carried beta-lactam-, tetracycline-, and chloramphenicol-associated antimicrobial resistance genes. However, we could detect fosfomycin resistance only in one isolate. Concerning the virulence genes, we detected T3SS1 and T3SS2-associated genes in all and one isolate, respectively. However, we could not detect the tdh and trh genes. Of the 47 isolates, 17 belonged to 15 different STs, including ST 658 with 3 isolates. The rest 30 isolates were identified as 25 new STs. The results of this study support the need for operating a continuous monitoring system to prevent foodborne illnesses and the spread of antimicrobial resistance genes in V. parahaemolyticus.

Antibacterial and Antioxidant Potential of Methanol Extract of Viburnum sargentii Seeds (Viburnum sargentii 종자 메탄올 추출물의 항균 및 항산화 활성에 대한 연구)

  • Patil, Maheshkumar Prakash;Seong, Yeong-Ae;Kang, Min-jae;Singh, Alka Ashok;Niyonizigiye, Irvine;Kim, Gun-Do;Lee, Jong-Kyu
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.671-678
    • /
    • 2019
  • Antibacterial and antioxidant activities of plant sources have attracted a wide range of interest across the world over the last decade. This is due to the growing concern for safe and alternative sources of antibacterial and antioxidant agents. In this study, we focused on the antibacterial and antioxidant activities and the chemical composition of a methanol extract from Viburnum sargentii seeds. The chemical composition was determined by gas chromatography-mass spectroscopy (GC-MS), and the antibacterial activity was screened by a disc diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using the microbroth dilution and spread plate method, respectively. The V. sargentii extract showed growth inhibition activity on all tested Gram-positive (Listeria monocytogenes, Staphylococcus aureus, and Staphylococcus saprophyticus) and Gram-negative (Escherichia coli, Pseudomonas putida, and Proteus vulgaris) pathogenic bacteria. The MIC and MBC ranged from 0.156~1.25 mg/ml for Gram-positive and 0.625~5.0 mg/ml for Gram-negative tested bacteria. The GC-MS results revealed the presence of several phytochemicals such as ${\beta}-sitosterol$ and vitamin E, which are known for their pharmacological applications. The antioxidant activities of V. sargentii extract were investigated by three different methods: the 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay, the reducing power assay, and the total antioxidant capacity assay. The results showed a concentration-dependent antioxidant potential for all three used methods. In sum, our findings suggest that the methanol extract of V. sargentii seeds has the potential to inhibit the growth of pathogenic bacteria and provide antioxidant compounds, making it therefore worthy of further investigation.