• Title/Summary/Keyword: Microbiology Quality

Search Result 501, Processing Time 0.021 seconds

Studies on the Fermentation of Lupin Seed (II) - Preparation of traditional Korean fermented been Sauce and Paste - (루우핀콩의 발효에 관한연구(I I) -한국 재래식 장유 제조시험 -)

  • Oh, Sung-Hoon;Lee, Cherl-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.11 no.3
    • /
    • pp.241-248
    • /
    • 1983
  • Lupin seed was used to make Meju, the fermentation starter for Korean soybean sauce and paste in substitution for soybean and the fermentation characteristics were compared with those of soybean. Mejus were prepared by in-oculating Asp. oryzae on the cooked whole beans. The dried Mejus were used for making fermented bean sauce and paste by mixing with brine and subsequent ripening for 4 weeks. In general the protease activity and amylase activity-during ripening were higher in lupin seed Meju than those of soybean Meju. The increase in protease activity correlated to the increase in $\alpha$-amino nitrogen content of the fermented paste and sauce. The development of dark-brown color of the sauce during ripening faster with lupin seed Meju compared to soybean Meju. In sensory evaluation the flavor score of lupin seed sauce and paste was slightly lower than that of soybean products but the overall quality of fermented lupin seed sauce was acceptable.

  • PDF

Analysis of Microbial Community Structure for Effective Removal of Mixed Wastewater in Biological Wastewater Treatment (혼합폐수의 효율적인 처리를 위한 생물학적 처리공정 내의 미생물 군집 특성 분석)

  • Son, Hyeng-Sik;Son, Hee-Jong;Lee, Sang-Joon
    • KSBB Journal
    • /
    • v.28 no.3
    • /
    • pp.157-164
    • /
    • 2013
  • Depending on season, mixed wastewater can show great deviations in terms of the influent ratios of tannery and seafood-wastewater. Increases in the ratio of tannery wastewater in influent water also result in increases in the concentration of chromium, which decreases the ratio of BOD/T-N so that the removal efficiency of organic and nitrogen pollutants in biological wastewater treatment deteriorates. No substantial differences occur in the ratios of Eubacteria/total bacteria as the ratio between tannery wastewater and seafood wastewater changes in the influent water. In contrast, the cell numbers and activities of Eubacteria and total bacteria significantly decline with increasing ratios of tannery wastewater in the influent water. Stable removal of organic and nitrogen pollutants by biological wastewater treatments leads to dominance of Proteobacteria groups in all biological treatment basins. In aeration and oxic basins, ${\gamma}$-Proteobacteria account for approximately 21% of the Eubacteria groups, at $1.9{\times}10^9{\sim}2.0{\times}10^9$ cells/mL, while in an anoxic basin, ${\beta}$-Proteobacteria account for approximately 19% of the Eubacteria groups, at $1.3{\times}10^9$ cells/mL. However, a substantial decline in dominance of approximately 11% occurs for ${\gamma}$-Proteobacteria in aeration and oxic basins and about 1% for ${\beta}$-Proteobacteria in an anoxic basin. Mixed wastewater that undergoes extensive property changes of the influent water shows an efficiency of biological treatment that is greatly influenced by the ratio of dominant Proteobacteria groups.

Effect of Pichia farinosa SKM-1, Pichia anomala SKM-T, and Galactomyces geotrichum SJM-59 on Ammonia Reduction and Laying Performance

  • Mo, Eun-Kyoung;Lee, Jeong-Hyun;Xu, Bao-Jun;Lee, Bong-Duk;Moon, Young-Ja;Sung, Chang-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • Livestock industry requires alternatives of antibiotics to prevent environmental pollution and to maintain public health. We herein report on an effective method to reduce ammonia from livestock manure, and confirmed environmentally-friendly livestock production by adding three types of yeast probiotics, Pichia farinosa SKM-1, Pichia anomala SKM-T, and Galactomyces geotrichum SJM-59, into the feed stuff, separately and/or mixed, and these three types of yeasts were administered to the Hy-line brown layers for 8 weeks. Compared with control, the laying performance, the egg quality, and the number of intestinal lactic acid producing bacteria of the treated group were improved and/or increased significantly. Pichia anomala SKM-T potently reduced ammonia production from poultry manure, and the other strains were also able to reduce the ammonia from it. The optimum condition for the reduction of ammonia with Pichia farinosa SKM-1, Pichia anomala SKM-T, and Galactomyces geotrichum SJM-59 was obtained by using the augmented centroid-simplex design. The ratio of optimum condition was Pichia farinosa SKM-1:Pichia anomala SKM-T:Galactomyces geotrichum SJM-59=0.295:0.209:0.080, and the estimate was -123.36 (p=0.0l38). An ability to reduce the ammonia production from livestock manure was maintained at $30^{\circ}C$ for 15 weeks.

Optimal Temperature and Light Intensity for Improved Mixotrophic Metabolism of Chlorella sorokiniana Treating Livestock Wastewater

  • Lee, Tae-Hun;Jang, Jae Kyung;Kim, Hyun-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.11
    • /
    • pp.2010-2018
    • /
    • 2017
  • Mixotrophic microalgal growth gives a great premise for wastewater treatment based on photoautotrophic nutrient utilization and heterotrophic organic removal while producing renewable biomass. There remains a need for a control strategy to enrich them in a photobioreactor. This study performed a series of batch experiments using a mixotroph, Chlorella sorokiniana, to characterize optimal guidelines of mixotrophic growth based on a statistical design of the experiment. Using a central composite design, this study evaluated how temperature and light irradiance are associated with $CO_2$ capture and organic carbon respiration through biomass production and ammonia removal kinetics. By conducting regressions on the experimental data, response surfaces were created to suggest proper ranges of temperature and light irradiance that mixotrophs can beneficially use as two types of energy sources. The results identified that efficient mixotrophic metabolism of Chlorella sorokiniana for organics and inorganics occurs at the temperature of $30-40^{\circ}C$ and diurnal light condition of $150-200{\mu}mol\;E{\cdot}m^{-2}{\cdot}s^{-1}$. The optimal specific growth rate and ammonia removal rate were recorded as 0.51/d and 0.56/h on average, respectively, and the confirmation test verified that the organic removal rate was $105mg\;COD{\cdot}l^{-1}{\cdot}d^{-1}$. These results support the development of a viable option for sustainable treatment and effluent quality management of problematic livestock wastewater.

Statistical Selection of Amino Acids Fortifying a Minimal Defined Medium for a High-level Production of the Kringle Fragments of Human Apolipoprotein(a)

  • Lim, Hyung-Kwon;Kim, Sung-Geun;Jung, Kyung-Hwan;Seo, Jin-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.1
    • /
    • pp.90-96
    • /
    • 2004
  • A synthetic defined medium, fortified with amino acids, was developed for the stable production of the kringle fragments of human apolipoprotein(a) (apo(a)), rhLK68. Using a complex rich medium containing yeast extract and a high-cell-density fed-batch culture, the expression level of rhLK68 reached 17% of the total cellular protein, which corresponded to $5\;g\;l^{-1}$ of the culture. To replace the complex media with chemically defined media, several amino acids that positively affect cell growth and gene expression were chosen by a statistical method. The various combinations of the selected amino acids were tested for its fortifying effect on a minimal defined medium. When glutamine only was added, the overall expression level of rhLK68 reached 93% of the complex rich medium increasing the specific expression level by 22.4% and decreasing the cell growth by 24%. Moreover, the addition of glutamine resulted in a 2-fold increase in the concentration of rhLK68 in the culture broth, compared with the minimal defined medium. The synthetic defined media developed in this study could be generally applied to high-cell-density cultures of the recombinant Escherichia coli BL21(DE3), especially for the production of therapeutic proteins that require a strict quality control of the culture media and fermentation processes.

Prevalence of Malaria in Pregnant Women in Lagos, South-West Nigeria

  • Agomo, Chimere O.;Oyibo, Wellington A.;Anorlu, Rose I.;Agomo, Philip U.
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.2
    • /
    • pp.179-183
    • /
    • 2009
  • Prevalence rates reported for malaria in pregnancy in Nigeria vary considerably. The accuracy of results of malaria diagnosis is dependent on training, experience, and motivation of the microscopist as well as the laboratory facility available. Results of training programmes on malaria microscopy have shown low levels of sensitivity and specificity of those involved in malaria diagnosis routinely and for research. This study was done to ascertain the true prevalence of malaria in pregnancy in Lagos, South-West Nigeria. A total of 1,084 pregnant women were recruited into this study. Blood smears stained with Giemsa were used for malaria diagnosis by light microscopy. Malaria infection during pregnancy presents mostly as asymptomatic infection. The prevalence of malaria in this population was 7.7% (95% confidence interval; 6.2-9.4%). Factors identified to increase the risk of malaria infection include young maternal age (<20 years), and gravidity (primigravida). In conclusion, this study exposes the over-diagnosis of malaria in pregnancy and the need for training and retraining of laboratory staffs as well as establishing the malaria diagnosis quality assurance programme to ensure the accuracy of malaria microscopy results at all levels.

Fungal Production of Single Cell Oil Using Untreated Copra Cake and Evaluation of Its Fuel Properties for Biodiesel

  • Khot, Mahesh;Gupta, Rohini;Barve, Kadambari;Zinjarde, Smita;Govindwar, Sanjay;RaviKumar, Ameeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.459-463
    • /
    • 2015
  • This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.

Importance of Weissella Species during Kimchi Fermentation and Future Works (김치발효에서 Weissella 속의 중요성과 앞으로의 연구 과제)

  • Lee, Kang-Wook;Park, Ji-Yeong;Chun, Ji-Yeon;Han, Nam-Soo;Kim, Jeong-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.4
    • /
    • pp.341-348
    • /
    • 2010
  • Weissella species are one of the most common lactic acid bacteria isolated from kimchi during kimchi fermentation but few researches have been done on this group of organisms. Its recent establishment as a separate genus is one reason for the few studies. Another reason is probably poor resolution of identification methods based on biochemical properties. Currently, 14 species are registered in the genus of Weissella but new members are reported continuously. It is important to understand at detail the properties and roles of Weissella species during kimchi fermentation if desirable properties of Weissella species are fully utilized for the production of high quality kimchi with good taste and enhanced biofunctionalities.

Quantitative Detection of Residual E. coli Host Cell DNA by Real-Time PCR

  • Lee, Dong-Hyuck;Bae, Jung-Eun;Lee, Jung-Hee;Shin, Jeong-Sup;Kim, In-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1463-1470
    • /
    • 2010
  • E. coli has long been widely used as a host system for the manufacture of recombinant proteins intended for human therapeutic use. When considering the impurities to be eliminated during the downstream process, residual host cell DNA is a major safety concern. The presence of residual E. coli host cell DNA in the final products is typically determined using a conventional slot blot hybridization assay or total DNA Threshold assay. However, both the former and latter methods are time consuming, expensive, and relatively insensitive. This study thus attempted to develop a more sensitive real-time PCR assay for the specific detection of residual E. coli DNA. This novel method was then compared with the slot blot hybridization assay and total DNA Threshold assay in order to determine its effectiveness and overall capabilities. The novel approach involved the selection of a specific primer pair for amplification of the E. coli 16S rRNA gene in an effort to improve sensitivity, whereas the E. coli host cell DNA quantification took place through the use of SYBR Green I. The detection limit of the real-time PCR assay, under these optimized conditions, was calculated to be 0.042 pg genomic DNA, which was much higher than those of both the slot blot hybridization assay and total DNA Threshold assay, where the detection limits were 2.42 and 3.73 pg genomic DNA, respectively. Hence, the real-time PCR assay can be said to be more reproducible, more accurate, and more precise than either the slot blot hybridization assay or total DNA Threshold assay. The real-time PCR assay may thus be a promising new tool for the quantitative detection and clearance validation of residual E. coli host cell DNA during the manufacturingprocess for recombinant therapeutics.

Plant RNA Virus Sequences Identified in Kimchi by Microbial Metatranscriptome Analysis

  • Kim, Dong Seon;Jung, Ji Young;Wang, Yao;Oh, Hye Ji;Choi, Dongjin;Jeon, Che Ok;Hahn, Yoonsoo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.7
    • /
    • pp.979-986
    • /
    • 2014
  • Plant pathogenic RNA viruses are present in a variety of plant-based foods. When ingested by humans, these viruses can survive the passage through the digestive tract, and are frequently detected in human feces. Kimchi is a traditional fermented Korean food made from cabbage or vegetables, with a variety of other plant-based ingredients, including ground red pepper and garlic paste. We analyzed microbial metatranscriptome data from kimchi at five fermentation stages to identify plant RNA virus-derived sequences. We successfully identified a substantial amount of plant RNA virus sequences, especially during the early stages of fermentation: 23.47% and 16.45% of total clean reads on days 7 and 13, respectively. The most abundant plant RNA virus sequences were from pepper mild mottle virus, a major pathogen of red peppers; this constituted 95% of the total RNA virus sequences identified throughout the fermentation period. We observed distinct sequencing read-depth distributions for plant RNA virus genomes, possibly implying intrinsic and/or technical biases during the metatranscriptome generation procedure. We also identified RNA virus sequences in publicly available microbial metatranscriptome data sets. We propose that metatranscriptome data may serve as a valuable resource for RNA virus detection, and a systematic screening of the ingredients may help prevent the use of virus-infected low-quality materials for food production.