Browse > Article

Importance of Weissella Species during Kimchi Fermentation and Future Works  

Lee, Kang-Wook (Division of Applied Life Science(BK21), Graduate School)
Park, Ji-Yeong (Division of Applied Life Science(BK21), Graduate School)
Chun, Ji-Yeon (Department of Food Science and Technology, Sunchon National University)
Han, Nam-Soo (Department of Food Science and Technology, Chungbuk National University)
Kim, Jeong-Hwan (Division of Applied Life Science(BK21), Graduate School)
Publication Information
Microbiology and Biotechnology Letters / v.38, no.4, 2010 , pp. 341-348 More about this Journal
Abstract
Weissella species are one of the most common lactic acid bacteria isolated from kimchi during kimchi fermentation but few researches have been done on this group of organisms. Its recent establishment as a separate genus is one reason for the few studies. Another reason is probably poor resolution of identification methods based on biochemical properties. Currently, 14 species are registered in the genus of Weissella but new members are reported continuously. It is important to understand at detail the properties and roles of Weissella species during kimchi fermentation if desirable properties of Weissella species are fully utilized for the production of high quality kimchi with good taste and enhanced biofunctionalities.
Keywords
kimchi; Weissella; lactic acid bacteria; fermentation;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 Tanasupawat, S., O. Shida, S. Okada, and K. Komagata. 2000. Lactobacillus acidipiscis sp. nov. and Weissella thailandensis sp. nov., isolated from fermented fish in Thailand. Int. J. Syst. Evol. Microbiol. 50: 1479-1485.   DOI   ScienceOn
2 Kim, M.-J. and J.-S. Chun. 2005. Bacterial community structure in kimchi, a Korean fermented vegetable food, as revealed by 16S rRNA gene analysis. Int. J. Food Microbiol. 103: 91-96.   DOI   ScienceOn
3 Padonou, S. W., U. Schillinger, D. S. Nielsen, C. M. A. P. Franz, M. Hansen, J. D. Hounhouigan, M. C. Nago, and M. Jakobsen. 2010. Weissella beninensis sp. nov., a motile lactic acid bacterium from submerged cassava fermentations, and emended description of the genus Weissella. Int. J. Syst. Evol. Microbiol. 60: 2193-2198.   DOI   ScienceOn
4 Yu, J.-J., H.-J. Park, S.-G. Kim, and S.-H. Oh. 2009. Isolation, identification, and characterization of Weissella strains with high ornithine producing capacity from kimchi. Kor. J. Microbiol. 45: 339-345.   과학기술학회마을
5 Nam, Y.-D., H.-W. Chang, K.-H. Kim, S.-W. Roh, and J.-W. Bae. 2009. Metatranscriptome analysis of lactic acid bacteria during kimchi fermentation with genome-probing microarrays. Int. J. Food Microbiol. 130: 140-146.   DOI   ScienceOn
6 Liang, Z.-Q., S. Srinivasan, Y.-J. Kim, H.-B. Kim, H.-T. Wang, and D.-C. Yang. 2010. Lactobacillus kimchicus sp. nov., a $\beta-glucosidase$ producing bacterium isolated from kimchi. Int. J. Syst. Evol. Microbiol. (in press) doi:10.1099/ ijs.0.017418-0.
7 Magnusson, J., H. Jonsson, J. Schnurer, and S. Roos. 2002. Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int. J. Syst. Evol. Microbiol. 52: 831-834.   DOI   ScienceOn
8 Mheen, T.-I. and T.-W. Kwon. 1984. Effect of temperature and salt concentration on kimchi fermentation. Korean J. Food Sci. Technol. 16: 443-450.
9 Park, H. J., Y.-H. Park, and Y. B. Kim. 2001. Characterization of growth and ethanol formation of Weissella paramesenteroides P30. Food Sci. Biotechnol. 10: 72-75.
10 Park, J. A., G.–Y. Heo, J. S. Lee, Y. J. Oh, B. Y. Kim, T. I. Mheen, C. K. Kim, and J. S. Ahn. 2003. Change of microbial communities in kimchi fermentation at low temperature. The Kor. J. Microbiol. 39: 45-50.   과학기술학회마을
11 Pham, T. T and N. P. Shah. 2008. Effect of lactulose on biotransformation of isoflavone glycosides to aglycones in soymilk by lactobacilli. J. Food. Sci. 73: 158-165.
12 Raimondi, S., L. roncaglia, M. de Lucia, A. Amaretti, A. Leonardi, U. M. Pagnoni, and M. Rossi. 2009. Bioconversion of soy isoflavones daidzin and daidzein by Bifidobacterium strains. Appl. Microbiol. Biotechnol. 81: 943-950.   DOI   ScienceOn
13 Lee, D.-Y., S.-J. Kim, J.-H. Cho, and J.-H. Kim. 2008. Microbial population dynamics and temperature changes during fermentation of kimjang Kimchi. The J. Microbiol. 46: 590-593.   DOI   ScienceOn
14 Shim, S.-M. and J.-H. Lee. 2008. Evaluation of lactic acid bacteria community in Kimchi using terminal-restriction fragment length polymorphism analysis. Kor. J. Microbiol. Biotechnol. 36: 247-259.   과학기술학회마을
15 Tang, A. L., N. P. Shah, G. Wilcox, K. Z. Walker, and L. Stojanovska. 2007. Fermentation of calcium-fortified soymilk with Lactobacillus: effects on calcium solubility, isoflavone conversion, and production of organic acids. J. Food. Sci. 72: 431-436.   DOI
16 Lee, S. O., C. S. Kim, S. K. Cho, H. J. Choi, G. E. Ji, and D. K. Oh. 2003. Bioconversion of linoleic acid into conjugated linoleic acid during fermentation and by washed cells of Lactobacillus reuteri. Biotechnol. Lett. 25: 935-938.   DOI   ScienceOn
17 Lee, H.-J., Y.-J. Joo, C.-S. Park, J. S. Lee, Y.-H. Park, J.-S. Ahn, and T.-I. Mheen. 1999. Fermentation patterns of green onion kimchi and Chinese cabbage kimchi. Kor. J. Food Sci. Technol. 31: 488-494.
18 Izumi, T., M. K. Piskula, S. Osawa, A. Obata, K. Tobe, M. Saito, S. Kataoka, Y. Kubota, and M. Kikuchi. 2000. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutrit. 130: 1695-1699.
19 Lee, J.-S., K. C. Lee, J.-S. Ahn, T.-I. Mheen, Y.-R. Pyun, and Y.-H. Park. 2002. Weissella koreensis sp. nov., isolated from kimchi. Int. J. Syst. Evol. Microbiol. 52: 1257-1261.   DOI   ScienceOn
20 Lee, J.-S., G.-Y. Heo, J. W. Lee, Y.-J. Oh, J. A. Park, Y.-H. Park, Y.-R. Pyun, and J. S. Ahn. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102:143-150.   DOI   ScienceOn
21 Kim, B., J. Lee, J. Jang, J. Kim, and H. Han. 2003. Leuconostoc inhae sp. nov., a lactic acid bacterium isolated from kimchi. Int. J. Syst. Evol. Microbiol. 53: 1123-1126.   DOI   ScienceOn
22 Kim, M.-J., H. N. Seo, T. S. Hwang, S. H. Lee, and D. H. Park. 2008. Characterization of exopolysaccharide (EPS) produced by Weissella hellenica SKkimchi3 isolated from kimchi. The J. Microbiol. 46: 535-541.   DOI   ScienceOn
23 Lee, C.-W., C.-Y. Ko, and D.-M. Ha. 1992. Microbial changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Kor. J. Appl. Microbiol. Biotechnol. 20: 102-109.
24 Hong, S. W., L. K. You, B. M. Jung, W. S. Kim, and K. S. Chung. 2009. Characterization of $\alpha-galactosidase$ and $\beta-glucosidase$ by Weissella cibaria. Kor. J. Microbiol. Biotechnol. 37: 204-212.   과학기술학회마을
25 Donkor, O. N. and N. P. Shah. 2008. Production of betaglucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. J. Food. Sci. 73: 15-20.
26 Chun, J., J. S. Kim and J. H. Kim. 2008. Enrichment of isoflavone aglycones in soymilk by fermentation with single and mixed cultures of Streptococcus infantarius 12 and Weissella sp. 4. Food Chem. 109: 278-284.   DOI   ScienceOn
27 Ennahar, S. and Y. Cai. 2004. Genetic evidence that Weissella kimchii Choi et al. 2002 is a later heterotypic synonym of Weissella cibaria Bjorkroth et al. 2002. Int. J. Syst. Evol. Microbiol. 54: 463-465.   DOI   ScienceOn
28 De Bruyne, K., N. Camu, L. De Vuyst, and P. Vandamme. 2010. Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 60: 1999-2005.   DOI   ScienceOn
29 Chun, J., G. M. Kim, K. W. Lee, I. D. Choi, G.–H. Kwon, J.– H. Park, S.–J. Jeong, J. S. Kim, and J. H. Kim. 2007. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. J. Food. Sci. 72: 39-44.
30 Collins, M. D., J. Samelis, J. Metaxopoulos, and S. Wallbanks. 1993. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 75: 595-603.   DOI
31 De Bruyne, K., N. Camu, K. Lefebvre, L. De Vuyst, and P. Vandamme. 2008. Weissella ghanensis sp. nov., isolated from a Ghanaian cocoa fermentation. Int. J. Syst. Evol. Microbiol. 58: 2721-2725.   DOI   ScienceOn
32 Cho, J.-H., D.-Y. Lee, C.-N. Yang, J.-I. Jeon, J.-H. Kim, and H.-U. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257: 262-267.   DOI   ScienceOn
33 Cheigh, H. S. and K. Y. Park. 1994. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. Nutr. 34: 175-203.   DOI   ScienceOn
34 Chi, H., D.-H. Kim, and G.-E. Ji. 2005. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol. Pharm. Bull. 28: 2102-2105.   DOI   ScienceOn
35 Chin, H. S., F. Breidt, H. P. Fleming, W.-C. Shin, and S.-S. Yoon. 2006. Identification of predominant bacterial isolates from the fermenting kimchi using ITS-PCR and partial 16S rDNA sequence analyses. J. Microbiol. Biotechnol. 16: 68-76.   과학기술학회마을
36 Choi, H.-J., C.-I. Cheigh, S.-B. Kim, J.-C. Lee, D.-W. Lee, S.-W. Choi, J.-M. Park, and Y.-R. Pyun. 2002. Weissella kimchii sp. nov., a novel lactic acid bacterium from kimchi. Int. J. Syst. Evol. Microbiol. 52: 507-511.
37 Choi, I.-K., S.-H. Jung, B.-J. Kim, S.-Y. Park, J. Kim, and H.-U. Han. 2003. Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie van Leeuwenhoek 84: 247-253.   DOI   ScienceOn
38 Bjorkroth, K. J., U. Schillinger, R. Geisen, N. Weiss, B. Hoste, W. H. Holzapfel, H. J. Korkeala, and P. Vandamme. 2002. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 52: 141-148.
39 Chang, H.-W., K.-H. Kim, Y.-D. Nam, S. W. Roh, M.-S. Kim, C. O. Jeon, H.-M. Oh, and J.-W. Bae. 2008. Analysis of yeast and archaeal population dynamics in kimchi using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 126: 159-166.   DOI   ScienceOn
40 Champagne, C. P., T. A. Tompkins, N. D. Buckley, and J. M. Green-Johnson. 2010. Effect of fermentation by pure and mixed cultures of Streptococcus thermophilus and Lactobacillus helveticus on isoflavone and B-vitamin content of a fermented soy beberage. Food Microbiol. 27: 968-972.   DOI   ScienceOn
41 Ahn, D.-K., T.-W. Han, H.-Y. Shin, I.-N. Jin, and S.-Y. Ghim. 2003. Diversity and antibacterial activity of lactic acid bacteria isolated from kimchi. Kor. J. Microbiol. Biotechnol. 31: 191-196.   과학기술학회마을
42 Bae, J.-W., S.-K. Rhee, J. R. Park, W.-H. Chung, Y.-D. Nam, I. Lee, H. Kim, and Y.-H. Park. 2005. Development and evaluation of genome-probing microarray for monitoring lactic acid bacteria. Appl. Environ. Microbiol. 71: 8825-8835.   DOI   ScienceOn
43 Bjorkroth, K. J., R. Geisen, U. Schillinger, N. Weiss, P. De Vos, W. H. Holzapfel, H. J. Korkeala, and P. Vandamme. 2000. Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions. Appl. Environ. Microbiol. 66: 3764-3772.   DOI   ScienceOn