• 제목/요약/키워드: Microbial water quality

검색결과 411건 처리시간 0.027초

The Monitoring of Agricultural Environment in Daegwallyeong Area (대관령 지역의 농업환경 모니터링)

  • Park, Kyeong-Hun;Yun, Hye-Jeong;Ryu, Kyoung-Yul;Yun, Jeong-Chul;Lee, Jeong-Ju;Hwang, Hyun-Ah;Kim, Ki-Deog;Jin, Yong-Ik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제44권6호
    • /
    • pp.1027-1034
    • /
    • 2011
  • In order to provide the basic information on the agricultural environment in Daegwallyeong Highland, the characters of weather, water, and soil quality were investigated. The meteorological characteristics was monitored by automatic weather system (AWS) at 17 sites. The quality of water for samples were collected monthly at 24 sites depending on landuse style. Soil samples were collected from a forest, grassland, and the major vegetable cultivation areas such as potato, carrot, Chinese cabbage, onion, head lettuce, and welsh onion field. The weather showed the mountain climate, and the average yearly temperature is $6.4^{\circ}C$, the average temperature in January is $-7.6^{\circ}C$ and the average temperature in July is $19.1^{\circ}C$, and the change of temperature on the districts of Daegwallyeong is severe. The yearly record of precipitation shows 1717.2 mm. The water quality of crop field was worse than forest or grassland in Daewallyeong highland. In 2005, annual T-N, T-P, SS distribution of Chinese cabbage field showed 7.4~11.3, 0.061~0.1, and $3.0{\sim}53.0mg\;L^{-1}$. The potato field showed 3.1~7.2, 0.019~0.056 and $0.5{\sim}3.0mg\;L^{-1}$, respectively. Being compared of water quality between potato field and chinese cabbage field, it showed that the water quality of Chinese cabbage field was worse than potato field. On farming, the soil of crop cultivation showed pH 5.6 to 6.8, $18.0{\sim}42.4g\;kg^{-1}$ of OM, $316{\sim}658mg\;kg^{-1}$ of Avail. $P_2O_5$. The content of cations showed $0.41{\sim}0.88cmol_c\;kg^{-1}$ of Exch. K, $3.73{\sim}7.07cmol_c\;kg^{-1}$ of Exch. Ca and $1.17{\sim}1.90cmol_c\;kg^{-1}$ of Exch. Mg.

Effect of Quality Grade and Storage Time on the Palatability, Physicochemical and Microbial Quality of Hanwoo Striploin Beef

  • Yim, Dong-Gyun;Kim, Yu-Jin;Chung, Ku-Young
    • Food Science of Animal Resources
    • /
    • 제35권4호
    • /
    • pp.449-458
    • /
    • 2015
  • The effects of quality grade and storage time on physicochemical, sensory properties and microbial population of Hanwoo striploin beef were investigated. After a total of 30 Hanwoo beef were slaughtered, the cold carcasses were graded by official meat grader at 24 h postmortem. The carcasses were categorized into five groups (quality grade 1++, 1+, 1, 2, and 3) and were vacuum-packaged and stored. The samples were kept for 1, 4, 6, 8, 11, 13, 15, 18, 20, 22 and 25 d for analyses. As the quality grade was increased, moisture, protein and ash contents decreased (p<0.05). Higher quality grade corresponded with higher fat contents. The shear force values decreased with increasing quality grade and showed decreases sharply during the first 4 d (p<0.05). pH, water holding capacity, cooking loss, and volatile basic nitrogen for grade 1++ groups were lower than for grade 3 (p<0.05). CIE L* and b* values increased as increased quality grade (p<0.05). Meat color decreased until 13 d and fluctuated after 15 d of storage (p<0.05). Regarding the sensory scores, higher quality grade corresponded with higher juiciness, tenderness, flavor, fatty and palatability scores (p<0.05). Generally, increased storage time for 15 d improved sensory scores attributes. Results indicate that a high quality grade could positively influence physicochemical and sensory properties.

The Microbial Contamination and Effective Control Method of Dental Unit Water System (치과용 유니트 수계의 미생물 오염 및 효과적인 관리 방법)

  • Yoon, Hye Young;Lee, Si Young
    • Journal of dental hygiene science
    • /
    • 제15권4호
    • /
    • pp.383-392
    • /
    • 2015
  • Dental chair unit (DCU) is the most essential equipment for the dental treatment in dentistry. DCU output water is used for various applications during dental treatment. DCU output water must be clean at the same level as drinking water since patients and dental staff are regularly exposed to water and aerosols generated from the DCU. Many studies demonstrated that DCU output water is frequently contaminated with microorganisms including opportunistic pathogen such as Legionella and Pseudomonas species. Thus, DCU output water may be a potential source of infection. In order to reduce microbial contamination levels in DCU output water, periodic management and continuous disinfection are necessary. Currently, there are a variety of disinfection methods for managing DCU output water and its efficacy is also diverse. We reviewed the level of microbial contamination, clinical implications of contaminated DCU output water and the various DCU disinfection methods.

Effects of Aging Methods and Periods on Quality Characteristics of Beef

  • Kim, SolJi;Kim, GwangHeun;Moon, Chan;Ko, KyoungBo;Choi, YoungMin;Choe, JeeHwan;Ryu, YounChul
    • Food Science of Animal Resources
    • /
    • 제42권6호
    • /
    • pp.953-967
    • /
    • 2022
  • The objective of this study was to determine effects of aging methods (wet-aged, dry-aged, and packaged dry-aged) during 60 d on quality traits and microbial characteristics of beef. Wet-aged beef was packed by vacuum packaging and stored in a 4℃ refrigerator. Dry-aged beef was used without packaging. Packaged dry-aged beef was packaged in commercial bags. Dry-aged and packaged dry-aged samples were stored in a meat ager at 2℃-4℃ with 85%-90% relative humidity. Meat color, crust thickness, aging loss, cooking loss, Warner-Bratzler shear force (WBSF), texture profile analysis, Torrymeter, meat pH, water activity, volatile basic nitrogen (VBN), thiobarbituric acid reactant substances (TBARS), and microbial analysis were measured or performed every 15 d until 60 d of aging time. Meat color changed significantly with increasing aging time. Differences in meat color among aging methods were observed. Aging losses of dry-aged and packaged dry-aged samples were higher than those of wet-aged samples. Wet-aged beef showed higher cooking loss, but lower WBSF than dry-aged and packaged dry-aged beef. VBN and TBARS showed an increasing tendency with increasing aging time. Differences of VBN and TBARS among aging methods were found. Regarding microbial analysis, counts of yeasts and molds were different among aging methods at the initial aging time. Packaged dry-aged and dry-aged beef showed similar values or tendency. Significant changes occurred during aging in all aging methods. Packaged dry aging and dry aging could result in similar quality traits and microbial characteristics of beef.

Removal Characteristics of Geosmin and MIB in BAC Process : Biodegradation and Adsorption (생물활성탄 공정에서 Geosmin과 MIB의 제거 특성 : 생물분해와 흡착)

  • Son, Hee-Jong;Lee, Jeong-Kyu;Kim, Sang-Goo;Park, Hong-Ki;Jung, Eun-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제39권6호
    • /
    • pp.318-324
    • /
    • 2017
  • We evaluated geosmin and MIB biodegradation and adsorption mechanism of biological activated carbon (BAC) and anthracite biofilter. In steady state of BAC process, the geosmin and MIB were completely removed at the 30 min empty bed contact time (EBCT) even though low water temperature ($9^{\circ}C$) in which the activity of attached bacteria decreased. When the water temperature was $26^{\circ}C$, the microbial biomass and activity were higher at the upper layer of the biofilm than at $9^{\circ}C$, and the microbial biomass and activity decreased as the depth was deeper. This is because when the water temperature is high, the biodegradable organic matter (BOM) removal rate in the upper layer is high and the BOM amount that can't be supplied to the lower layer. The Removal rate of geosmin and MIB by BAC process did not show a significant difference compare to activity-inhibited BAC by treated with azide and the biofilter also removed the geosmin and MIB by biological action. It means geosmin and MIB could be removed by competitive relationship between adsorption and biodegradation.

Microbial community analysis of an eco-friendly recirculating aquaculture system for olive flounder (Paralichthys olivaceus) using complex microbial probiotics (복합미생물 프로바이오틱을 이용한 환경친화적 넙치 순환여과양식시스템에서의 미생물군집 분석)

  • Rhee, Chaeyoung;Kim, Haham;Emmanuel, S. Aalfin;Kim, Hong-Gi;Won, Seonghun;Bae, Jinho;Bai, Sungchul C.;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • 제54권4호
    • /
    • pp.369-378
    • /
    • 2018
  • This study was conducted to evaluate effects of dietary microbial probiotics on the growth and disease resistance of olive flounder (Paralichthys olivaceus) in a recirculating aquaculture system (RAS), and the effects of the probiotic bioaugmentation on the microbial community structure and water quality. For the analysis, 80 juvenile fish (average weight, $25.7{\pm}7.6g$; average length, $15.2{\pm}1.7cm$) were fed a basal diet containing a commercial microbial product CES-AQ1 (CES; $1{\times}10^9\;CFU/kg$ diet) in an RAS for 8 weeks. Weight gain, the specific growth rate, feed efficiency, and protein efficiency ratio of the fish fed the CES diet in the RAS were 1.5~2.5 times higher than those of fish fed the basal diet alone, or the basal diet containing oxytetracycline (OTC), yeast plus bacterium, or Bacillus subtilis in a still water system. There was no significant difference in the pathogen challenge test between fish fed the OTC diet and fish fed the CES diet in the RAS, suggesting the CES-AQ1 probiotic used in the RAS as a potential replacement for antibiotics. The RAS biofilter maintained the highest microbial diversity and appeared to harbor microbial communities with ammonium oxidation, denitrification, and fish pathogen suppression functions. Ammonia, which is hazardous to fish, was significantly decreased to < 0.5 mg/L in 19 days, indicating the effectiveness of probiotic supplementation to maintain good water quality in RAS. These results suggest that the intestinal microbial communities of fish are stabilized by a probiotic-containing diet (CES) and that bioaugmentation with probiotics may be an eco-friendly and economical supplement for aquaculture of olive flounder, promoting both good water quality and fish health in an RAS.

Nutrient dynamics in montane wetlands, emphasizing the relationship between cellulose decomposition and water chemistry

  • Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • 제7권4호
    • /
    • pp.33-42
    • /
    • 2005
  • Wetlands often function as a nutrient sink. It is well known that increased input of nutrient increases the primary productivity but it is not well understood what is the fate of produced biomass in wetland ecosystem. Water and sediment quality, decomposition rate of cellulose, and sediment accumulation rate in 11 montane marshes in northern Sierra Nevada, California were analyzed to trace the effect of nitrogen and phosphorus content in water on nutrient dynamics. Concentrations of ammonium, nitrate, soluble reactive phosphorus (SRP) in water were in the range of 27 to 607, 8 to 73, and 6 to 109 ppb, respectively. Concentrations of ammonium, calcium, magnesium, sodium, and potassium in water were the highest in Markleeville, which has been impacted by animal farming. Nitrate and SRP concentrations in water were the highest in Snow Creek, which has been impacted by human residence and a golf course. Cellulose decomposition rates ranged from 4 to 75 % per 90 days and the highest values were measured in Snow Creek. Concentrations of total carbon, nitrogen, and phosphorus in sediment ranged from 8.0 to 42.8, 0.5 to 3.0, and 0.076 to 0.162 %, respectively. Accumulation rates of carbon, nitrogen, and phosphorus fluctuated between 32.7 to 97.1, 2.4 to 9.0, and 0.08 to $1.14gm^{-2}yr{-1}$, respectively. Accumulation rates of carbon and nitrogen were highest in Markleeville and that of phosphorus was highest in Lake Van Norden. Correlation analysis showed that decay rate is correlated with ammonium, nitrate, and SRP in water. There was no correlation between element content in sediment and water quality. Nitrogen accumulation rate was correlated with ammonium in water. These results showed that element accumulation rates in montane wetland ecosystems are determined by decomposition rate rather than nutrient input. This study stresses a need for eco-physiological researches on the response of microbial community to increased nutrient input and environmental change because the microbial community is responsible for the decomposition process.

  • PDF

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • 제53권2호
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

Analysis Temporal and Spatial Changes of Water Quality in Domestic Hydropower Dam Reservoirs (국내 수력발전댐 저수지 수질의 시공간 변화 분석)

  • Park, Kyoung-deok;Kang, Dong-hwan;Jo, Won Gi;Yang, Minjune
    • Journal of Environmental Science International
    • /
    • 제31권5호
    • /
    • pp.373-388
    • /
    • 2022
  • This study analyzed the temporal and spatial characteristics of water quality for five hydropower dam reservoirs in South Korea. Water temperature, pH, dissolved oxygen, and chlorophyll-a (Chl-a) showed high fluctuations in summer and autumn at all reservoirs, indicating the existence of seasonal effects. At all five reservoirs, the concentrations of suspended solids (SS) and total nitrogen (TN) fell under the "slightly bad" category and those of total organic carbon (TOC) fell under the "slightly good" category or higher, according to "the standard for living environment of lake water quality." Variations in the concentration ranges and degrees of change in SS, TN, and TOC among reservoirs were observed, indicating the influences of rainfall, surrounding environments, and seasonal changes. Daecheong and Namgang Dam showed high Chl-a concentrations in summer, indicating that the metabolism of microbial communities, such as algae, was active.

Characterizing Fluorescence Properties of Dissolved Organic Matter for Water Quality Management of Rivers and Lakes (하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석)

  • Hur, Jin;Shin, Jae-Ki;Park, Sung-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • 제28권9호
    • /
    • pp.940-948
    • /
    • 2006
  • Fluorescence measurements of dissolved organic matter(DOM) have the superior advantages over other analysis tools for applying to water quality management. They are simple and fast and require minimal pretreatment of samples. Fluorescence index($F_{450}/F_{500}$), synchronous spectra, and fluorescence excitation-emission matrices(EEM) of various DOM samples were investigated to discriminate autochthonous/allochthonous composition, protein-like fluorescence, fulvic-like fluorescence, humic-like fluorescence, terestrial humic-like fluorescence by comparing among the real DOM samples of different origins with the help of literature. The samples used included standard purified DOM, lake, river and wastewater treatment effluent. The relative distribution of various DOM composition was derived from the ratios of each fluorescence region. The results were very consistent with those expected from the sample properties. Allochthonous and terrestrial humic-like fluorescence were more prominent in the samples with abundant soil-derived DOM components. In addition, the protein-like fluorescence property was more pronounced in the samples where strong algal or microbial activities were expected. It was also shown that the ratio of protein-like/terrestrial humic-like fluorescence obtained from synchronous spectrum and fluorescence EEM could be used as an indicator for the evaluation of wastewater treatment on the downstream water quality of rivers and for the prediction of the degree of algal/microbial activities in lakes. It is expected that the results of this study will provide the basic information to develop the future water quality management techniques using DOM fluorescence measurements.