• Title/Summary/Keyword: Microbial water quality

Search Result 411, Processing Time 0.024 seconds

Development of a Garlic Peeling System Using High-Pressure Water Jets (III) - Introduction of a microbial control system - (습식 마늘박피 시스템 개발 (III) - 미생물 제어 시스템의 도입 -)

  • Kim J.;Bae Y. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.17-24
    • /
    • 2005
  • An efficient microbial control system was introduced into a garlic peeling system using pressurized water in order to improve the quality and the shelf-life of peeled garlic. High microbial density of the spoiled peeled garlic and the water used for peeling and washing indicated that an efficient microbial control system is necessary far the peeling system. Though Pseudomonas spp. and Penicillium spp. were closely related to the spoilage of peeled garlic, the spoilage of peeled garlic was thought to be caused mainly by nonspecific increase in microbial density. The shelf-life of the garlic peeled by pressurized water was longer than that of the garlic peeled by pressurized air, and the degree of damage had great effect on the shelf-life of peeled garlic. Ozonated water was effective in decreasing the microbial contamination and in increasing the shelf-life of peeled garlic. Based on the findings of the study, following improvements were made to the garlic peeling system using pressurized water; 1) the water circulation system was modified in order to completely separate the water for washing from the water for garlic peeling, 2) filtration and cooling equipments were introduced into the circulation system of the water for peeling, and 3) an ozone generator which could continuously supply ozonated water (dissolved ozone concentration of 0.4 ppm) was attached to the circulation system of the water for washing.

A Study on the Quality Depending on Sanitization method of Raw vegetables in Foodservice Operations( I ) (단체급식소에서 이용되는 식재료의 전처리시 소독방법에 따른 품질 연구( I ))

  • Kim Heh-Young;Go Seong Hui;Jeong Jin-Woong;Kim Ji-Young;Lim Yaung-iee
    • Korean journal of food and cookery science
    • /
    • v.20 no.6 s.84
    • /
    • pp.667-676
    • /
    • 2004
  • The purpose of this study was to estimate the microbial quality of some raw vegetables, and suggest a safer method for their sanitization and pre-preparation in foodservice operations. Baechu-geotjeori was monitored from the ingredient to the final product, during different holding temperature. Three sanitization methods were performed during the pre-preparation (tap water, chlorine water and electrolyzed water). The largest reduction in the microbial counts was shown with the electrolyzed water pre-preparation (after treatment; the total plate counts decreased to 3.34-4.06 Log CFU/g, coliform counts decreased to 1.40-1.45 CFU/g). Prior to immersion in the chlorine water, washing was first peformed to see if the was a larger effective reduction in the microbial counts.

Microbial Risk Assessment using E. coli in UV Disinfected Wastewater Irrigation on Paddy

  • Rhee, Han-Pil;Yoon, Chun-G.;Jung, Kwang-Wook;Son, Jang-Won
    • Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.120-125
    • /
    • 2009
  • Water stress has become a major concern in agriculture. Korea suffers from limited agricultural water supply, and wastewater reuse has been recommended as an alternative solution.A study was performed to examine the effects of microorganism concentration in the ponded-water of a paddy rice field with reclaimed-water irrigation for evaluating the microbial risk to farmers and neighborhoodchildren.Most epidemiological studies were performed based on an upland field, and they may not directly applicable to paddy fields. Beta-Poisson model was used to estimate the microbial risk of pathogen ingestion. Their risk value increased significantly high level after irrigation and precipitation.It implies that agricultural activities such as plowing, and fertilizing, and precipitation need be practiced a few days after irrigation considering health risks. The results about field application of the microbial risk assessment using E. coli showed difference according to monitoring time and treatment plot. Result of the microbial risk assessment showed that risk values of ground-water and reclaimed secondary waste water irrigation were lower than directly use of wastewater treatment plants' effluent. This paper should be viewed as a first step in the application of quantitative microbial risk assessment of E. coli to wastewater reuse in a paddy rice farming.

Ozone-produced Oxidants Improve Water Quality Parameters and Microbial Colony Counts in the Semi-Recirculating Aquaculture System for Olive Flounder Paralichthys olivaceus (반순환여과양식시스템에서 오존 유래 잔류산화물이 넙치(Paralichthys olivaceus) 사육수의 수질과 미생물에 미치는 영향)

  • Jung, Sangmyung;Park, Woogeun;Park, Seongdeok;Park, Jeonghwan;Kim, Jae-Won;Kim, Pyong-kih
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.5
    • /
    • pp.751-760
    • /
    • 2021
  • This study investigated the changes in water quality parameters and microbial colonies when ozone was applied to a semi-recirculating aquaculture system (semi-RAS) for the olive flounder Paralichthys olivaceus (500 g in average weight). Concentrations of ozone-produced oxidants (OPO) in rearing tanks were maintained at 0, 0.014, 0.025 mg/L as Cl2 for 26 days. Except total ammonia nitrogen, nitrite nitrogen, nitrate nitrogen, phosphate phosphorus, chemical oxygen demand, and total suspended solids decreased significantly with increasing OPO concentration in daily and weekly monitoring (P<0.05). Colony forming unit (CFU) counts of heterotrophic marine bacteria decreased in an OPO concentration-dependent manner. Overall reduction rates of microbial colonies in the treatments were 80% higher than those of the control (P<0.05). During the experiment, the OPO concentration-driven ozonation was reliably practiced without any adverse effects on the animals cultured in semi-RAS. Considering the biohazard, operating cost, and stability of ozonation, an OPO concentration of 0.014 mg/L would be sufficient to control water quality parameters and microbial colonies in a semi-RAS.

Performance and microbial community analysis for fouling characteristics in a full-scale flat sheet membrane bioreactor (실규모 flat sheet MBR 운영 효율과 Fouling 특성을 위한 미생물 군집 평가)

  • Seungwon Kim;Jeongdong Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.325-334
    • /
    • 2023
  • Membrane bioreactor (MBR) provides the benefits on high effluent quality and construction cost without the secondary clarification. Despite of these advantages, fouling, which clogs the pore in membrane modules, affects the membrane life span and effluent quality. Studies on the laboratory scale MBR were focused on the control of particulate fouling, organic fouling and inorganic fouling. However, less studies were focused on the control of biofouling and microbial aspect of membrane. In the full scale operation, most MBR produces high effluent quality to meet the national permit of discharge regulation. In this study, the performance and microbial community analysis were investigated in two MBRs. As the results, the performance of organic removal, nitrogen removal, and phosphorus removal was similar both MBRs. Microbial community analysis, however, showed that Azonexus sp. and Propionivibrio sp. contributed to indirect fouling to cause the chemical cleaning in the DX MBR.

Quality Characteristics of Sikhe Prepared with Astragalus membranaceus Water Extracts (황기 추출액을 첨가한 식혜의 특성)

  • Min, Sung-Hee
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.19 no.2
    • /
    • pp.216-223
    • /
    • 2009
  • The objective of this study was to assess the characteristics of Sikhe prepared with Astragalus membranaceus water extracts. The pH of the Sikhe increased with increasing amounts of the added extract. The L value (Lightness) decreased with increasing extract content, whereas the a and b values increased with increasing amounts of extracts. The saccharinity of the Sikhe also increased with increasing amounts of the extract. The microbial cell counts of the Sikhe samples presented no distinct differences in the early storage period, but the total microbial cell counts decreased with increasing concentrations of the extract over a longer storage period. Adding the extract did not affect the sensory characteristics of the Sikhe. Thus, according to our results, the addition of Astragalus membranaceus water extract has no impact on the sensory characteristics of Sikhe and can reduce the amount of added sugar. In addition, these results indicate Astragalus membranaceus may inhibit normal microbial growth and extend the shelf life of Sikhe.

  • PDF

Performance of Microbial Fuel Cell Integrated with Anaerobic Membrane Filter for Continuous Sewage Treatment with Stable Effluent Quality (안정적 유출수질의 연속 하수처리를 위한 혐기성 멤브레인 필터와 통합된 미생물연료전지의 성능 평가)

  • Lee, Yunhee;Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.808-812
    • /
    • 2013
  • A new type of microbial fuel cell (MFC) with anaerobic membrane filter was designed to produce bioelectricity and to treat domestic sewage at relatively high organic loading rate (OLR) of $6.25kgCOD/m^3/day$ and short hydraulic retention time (HRT) of 1.9 h. A following aeration system was applied to ensure effluent water quality in continuous operation. Glucose was supplemented to increase the influent concentration of domestic sewage. Influent substrate of 95% was removed via the MFC and following aeration system and the corresponding maximum power density was $25.6mW/m^3$. External resistor of $200{\Omega}$ and air-cathode system contributed better MFC performance comparing to $2000{\Omega}$ and dissolved oxygen as a catholyte.

Investigation of Microbiological and Physiochemical Quality for Irrigation Water used in Napa Cabbage Cultivation (배추 재배에 이용되는 농업용수의 미생물 오염도 조사 및 이화학성분 분석)

  • Yun, Bohyun;Kim, Min Kyung;Ryu, Jin Hee;Kim, Won-Il;Park, Byeong-Yong;Kim, Hyun-Ju;Lee, Seung-Don;Kim, Se-Ri
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.5
    • /
    • pp.396-403
    • /
    • 2017
  • The purpose of this study was to investigate water quality for irrigation water used in Napa cabbage cultivation. The water samples were analyzed for physiochemical and microbiological quality for a total of 111 samples including surface water (n = 75) and groundwater (n = 36) collected from five different regions where Napa cabbage is massively grown. As a conclusion, the levels of fecal indicators for surface water were higher than those for groundwater. The numbers of coliform from surface water and groundwater were 1.96-4.96 and 0-3.98 log MPN/100 mL, respectively. Enterococci were detected in 95% (72/75) of surface water samples and 22% (8/36) of groundwater samples. Besides, 97% (73/75) of surface water samples were observed being contaminated with Escherichia coli, and 22% (8/36) of groundwater sample was positive for E. coli. In the case of surface water, E. coli and coliform correlate to T-P, and enterococci showed relevance to the suspended solid (SS) and biochemical oxygen demand (BOD). In groundwater, fecal indicator bacteria showed relevance to the SS and chemical oxygen demand (COD). These results could be provided as fundamental date for establishing microbial standard of water used in leafy vegetables cultivation.

Quantitative Microbial Risk Assessment of Wastewater Reuse for Irrigation in Paddy Field (하수처리수의 논 관개용수 재이용을 위한 미생물 위해성 평가)

  • Yoon Chun-Gyeong;Han Jung-Yoon;Jung Kwang-Wook;Jang Jae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.2
    • /
    • pp.77-87
    • /
    • 2006
  • The reuse of wastewater for agricultural irrigation may cause human health risk as a result of exposure to pathogens. This study conducted the quantitative microbial risk assessment in paddy field irrigated with treated wastewater. Six treatments were used to irrigate the paddy field from Year 2003 to Year 2005: biofilter-effluent, UV-disinfected water (6, 16, 40, 68 $mW s cm^{-2}$), pond-treated water, wetland-treated water, conventional irrigation water and tap water. Total coliforms, fecal coliforms and E. coli were monitored during rice growing period. Beta - Poisson model was employed to calculate the microbial risk of pathogens ingestion that may occur to farmers and neighbor children. Uncertainty of risk was estimated using Monte Carlo simulation. In this study, the microbial risk was higher during initial cultivation (end of May$\sim$June), and it decreased with time. Biofilter effluent (secondary effluent) irrigation showed higher risk values than others (>$10^{-4}$) and irrigation with UV-disinfected water has the lowest risk range ($10^{-6}{\sim}10^{-5}$). The risk value estimated in 2005 was lower than risk value in 2003 and 2004, it is likely due to clean tap water irrigation in initial transplanting stage. It is suggested that irrigation with UV-disinfected water and pond-treated water would reduce the microbial risk associated with wastewater irrigation in paddy field. In addition, the first irrigation water quality significantly affected the subsequent microbial risk.

Microorganism Contamination from Diffuse Sources and Its Impacts on Water Quality in the Geum River Basin (금강유역 비점원에서 발생하는 미생물 오염 및 수질에 대한 영향)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.3
    • /
    • pp.504-512
    • /
    • 2006
  • In order to estimate microbial contaminant discharge from diffuse sources, rainfall runoff was monitored at forestry, agriculture and urban watersheds. Total coliform and E. coli were monitored at the study watersheds as they are regulated by the environmental laws. Concentration and EMC (Event Mean Concentration) of coliform of rainfall runoff at the urban watershed were the highest followed by those from agricultural and forestry watersheds. By monitoring coliform concentrations of overlying water and sediment at five monitoring points in the downstream of the Geum River, average concentration from spring to summer was higher than those values from fall to spring. Coliform concentrations in the pore water were higher compared to those of overlying water and closely related with flow rate of the river.