• Title/Summary/Keyword: Microbial status

Search Result 112, Processing Time 0.023 seconds

Status, Antimicrobial Mechanism, and Regulation of Natural Preservatives in Livestock Food Systems

  • Lee, Na-Kyoung;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.547-557
    • /
    • 2016
  • This review discusses the status, antimicrobial mechanisms, application, and regulation of natural preservatives in livestock food systems. Conventional preservatives are synthetic chemical substances including nitrates/nitrites, sulfites, sodium benzoate, propyl gallate, and potassium sorbate. The use of artificial preservatives is being reconsidered because of concerns relating to headache, allergies, and cancer. As the demand for biopreservation in food systems has increased, new natural antimicrobial compounds of various origins are being developed, including plant-derived products (polyphenolics, essential oils, plant antimicrobial peptides (pAMPs)), animal-derived products (lysozymes, lactoperoxidase, lactoferrin, ovotransferrin, antimicrobial peptide (AMP), chitosan and others), and microbial metabolites (nisin, natamycin, pullulan, ε-polylysine, organic acid, and others). These natural preservatives act by inhibiting microbial cell walls/membranes, DNA/RNA replication and transcription, protein synthesis, and metabolism. Natural preservatives have been recognized for their safety; however, these substances can influence color, smell, and toxicity in large amounts while being effective as a food preservative. Therefore, to evaluate the safety and toxicity of natural preservatives, various trials including combinations of other substances or different food preservation systems, and capsulation have been performed. Natamycin and nisin are currently the only natural preservatives being regulated, and other natural preservatives will have to be legally regulated before their widespread use.

The Dynamics of Protein Decomposition in Lakes of Different Trophic Status - Reflections on the Assessment of the Real Proteolytic Activity In Situ

  • Siuda, Waldemar;Kiersztyn, Bartosz;Chrost, Ryszard J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.897-904
    • /
    • 2007
  • The aim of this paper is to discuss the methodology of our investigation of the dynamics of protein degradation and the total in situ protealytic activity in meso/eutrophic, eutrophic, and hypereutrophic freshwater environments. Analysis of the kinetics and rates of enzymatic release of amino acids in water samples preserved with sodium azide allows determination of the concentrations of labile proteins $(C_{LAB})$, and their half-life time $(T_{1/2})$. Moreover, it gives more realistic information on resultant activity in situ $(V_{T1/2})$ of ecto- and extracellular proteases that are responsible for the biological degradation of these compounds. Although the results provided by the proposed method are general y well correlated with those obtained by classical procedures, they better characterize the dynamics of protein degradation processes, especially in eutrophic or hypereutrophic lakes. In these environments, processes of protein decomposition occur mainly on the particles and depend primarily on a metabolic activity of seston-attached bacteria. The method was tested in three lakes. The different degree of eutrophication of these lakes was clearly demonstrated by the measured real proteolytic pattern and confirmed by conventional trophic state determinants.

Effect of feeding mixed microbial culture fortified with trace minerals on ruminal fermentation, nutrient digestibility, nitrogen and trace mineral balance in Sheep

  • Kwak, W.S.;Kim, Y.I.;Choi, D.Y.;Lee, Y.H.
    • Journal of Animal Science and Technology
    • /
    • v.58 no.5
    • /
    • pp.21.1-21.8
    • /
    • 2016
  • Background: The aim of the present study was to determine the effects of feeding trace mineralsfortified mixed microbial culture (TMC) on ruminal fermentation, nutrient digestibility, blood electrolyte status, nitrogen balance, and trace mineral balance in sheep. Methods: Mixed microbes [0.6 % (v/w) of Enterobacter sp., Bacillus sp., Lactobacillus sp., and Saccharomyces sp.] were cultured with 99 % feedstuffs and 0.4 % trace minerals including zinc and copper for ensiling. Six sheep (a mean body weight of $46.5{\pm}1.2kg$) were fed two diets: a control diet (concentrate mix and rye straw) and an experimental diet (a control diet + 3.1 % TMC). Results: TMC feeding did not induce negative effects on ruminal fermentation, nutrient digestibility, blood electrolytes, and nitrogen balance in sheep. Feeding with TMC increased the intake of trace minerals (p < 0.05) and did not affect absorption of trace minerals in the whole digestive tract. Feeding with TMC increased fecal excretion and absorbable intake, and retention of zinc and copper (p < 0.05) by 71 % and 77 %, respectively. Conclusion: Feeding with TMC resulted in higher zinc and copper bioavailability and retention without any adverse effects on sheep performance.

Gut Microbiota-Derived Short-Chain Fatty Acids, T Cells, and Inflammation

  • Kim, Chang H.;Park, Jeongho;Kim, Myunghoo
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.277-288
    • /
    • 2014
  • T cells are central players in the regulation of adaptive immunity and immune tolerance. In the periphery, T cell differentiation for maturation and effector function is regulated by a number of factors. Various factors such as antigens, co-stimulation signals, and cytokines regulate T cell differentiation into functionally specialized effector and regulatory T cells. Other factors such as nutrients, micronutrients, nuclear hormones and microbial products provide important environmental cues for T cell differentiation. A mounting body of evidence indicates that the microbial metabolites short-chain fatty acids (SCFAs) have profound effects on T cells and directly and indirectly regulate their differentiation. We review the current status of our understanding of SCFA functions in regulation of peripheral T cell activity and discuss their impact on tissue inflammation.

Current Status and Future Promise of the Human Microbiome

  • Kim, Bong-Soo;Jeon, Yoon-Seong;Chun, Jongsik
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.16 no.2
    • /
    • pp.71-79
    • /
    • 2013
  • The human-associated microbiota is diverse, varies between individuals and body sites, and is important in human health. Microbes in human body play an essential role in immunity, health, and disease. The human microbiome has been studies using the advances of next-generation sequencing and its metagenomic applications. This has allowed investigation of the microbial composition in the human body, and identification of the functional genes expressed by this microbial community. The gut microbes have been found to be the most diverse and constitute the densest cell number in the human microbiota; thus, it has been studied more than other sites. Early results have indicated that the imbalances in gut microbiota are related to numerous disorders, such as inflammatory bowel disease, colorectal cancer, diabetes, and atopy. Clinical therapy involving modulating of the microbiota, such as fecal transplantation, has been applied, and its effects investigated in some diseases. Human microbiome studies form part of human genome projects, and understanding gleaned from studies increase the possibility of various applications including personalized medicine.

Current status of the Jangryu industry and future development direction (장류산업의 현황과 향후 발전 방안)

  • Na, Hye-Jin;Cho, Sung-Ho;Jeong, Do-Yeon
    • Food Science and Industry
    • /
    • v.53 no.2
    • /
    • pp.183-199
    • /
    • 2020
  • Traditional food is the basis of Korean food, but in the process of industrialization, Japanese soybean fermented product making method became standardization process of Korean soybean fermented product as a factory type. As a result, traditional fermented food was pushed behind the industrialization. At present, there is anxiety in the development of the fermented soybean product industry due to the gap in management level between the manufacturers, the decrease in consumption of Jangryu due to changes in dietary life, and the negative image as high salt food. In order to overcome these problems and lead continuous growth, governmental industrial development policies such as traditional liquor and Kimchi are inevitably needed. By laying the legal and institutional foundation and making good use of it in industry, it will be the foundation for continuous development in the market where fierce competition is accelerated.

Estimation of Rumen Microbial Protein Supply Using Urinary Purine Derivatives Excretion in Crossbred Calves Fed at Different Levels of Feed Intake

  • Singh, M.;Sharma, K.;Dutta, N.;Singh, P.;Verma, A.K.;Mehra, U.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.10
    • /
    • pp.1567-1574
    • /
    • 2007
  • A study was carried out to study the response of total purine derivatives (PD) excretion in urine to determine microbial N (MN) supply at four fixed levels of feed intake (namely 95, 80, 60 and 40% of voluntary intake). The crossbred (CB) calves were allocated according to a $4{\times}4$ Latin Square Design and fed wheat straw and concentrate (1:1). The rate of PD excretion (mmol/d) as a linear function of feed intake was 15.85/kg DMI and 20.12/kg DOMI. Based on the endogenous and PD excretion rates obtained in this study, a relationship between daily urinary PD excretion (Y, mmol) and daily microbial protein supply (X, mmol) was developed for crossbred calves as Y = 0.83X+0.296 kg $W^{0.75}$. The derived microbial N values using this equation differed (p<0.001) among the 4 groups and was the highest in L-95 followed by L-80, L-60 and L-40. The relationship between urinary nitrogen loss (Y, g/d) and DOMI (X, kg/d) was established as: Y = 6.038X+21.753 ($r^2$ = 0.663, p<0.01). When urinary excretion of PD (Y, mmol/d) was plotted against intake of DM and DOM (X, kg/d), the equations obtained were: Y = 7.1711X+8.674 ($r^2$ = 0.889, p<0.01) and Y = 12.434X+7.683 ($r^2$ = 0.896, p<0.01), respectively. The proportional contribution of allantoin and uric acid to total PD remained stable irrespective of level of feed intake. Similarly, urinary excretion of creatinine did not differ (p>0.05) between animals fed at different levels. The MN supply was the highest to animals at intake levels L-95, and decreased linearly with corresponding decrease in feed intake. However, the MN supply when expressed per kg DOMI remained statistically (p>0.05) similar irrespective of level of intake. The results revealed that the excretion of urinary purine derivatives were positively correlated with the level of feed intake as well as rumen microbial supply and thus it could be a good indicator for measuring the microbial protein supply and nutritional status of animals.

Physiological Responses of Tomato Plants and Soil Microbial Activity in Salt Affected Greenhouse Soil

  • Sung, Jwakyung;Lee, Suyeon;Nam, Hyunjung;Lee, Yejin;Lee, Jongsik;Almaroai, Yaser A.;Ok, Yongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1065-1072
    • /
    • 2012
  • Crop productivity decreases globally as a result of salinization. However, salinity impact on greenhouse-grown crops is much higher than on field-grown crops due to the overall concentrations of nutrients in greenhouse soils. Therefore, this study was performed to determine the short-term changes in growth, photosynthesis, and metabolites of tomato plants grown in greenhouse under heavily input of fertilizers evaluated by microbial activity and chemical properties of soils. The soils (< 3, 3.01~6, 6.01~10 and > 10.01 dS $m^{-1}$) from farmer's greenhouse fields having different fertilization practices were used. Results showed that the salt-accumulated soil affected adversely the growth of tomato plants. Tomato plants were seldom to complete their growth against > 10.0 dS $m^{-1}$ level of EC. The assimilation rate of $CO_2$ from the upper fully expanded leaves of tomato plants is reduced under increasing soil EC levels at 14 days, however; it was the highest in moderate or high EC-subjected (3.0 ~ 10.0 dS $m^{-1}$) at 28 days. In our experiment, soluble sugars and starch were sensitive markers for salt stress and thus might assume the status of crops against various salt conditions. Taken together, tomato plants found to have tolerance against moderate soil EC stress. Various EC levels (< 3.0 ~ 10.0 dS $m^{-1}$) led to a slight decrease in organic matter (OM) contents in soils at 28 days. Salinity stress led to higher microbial activity in soils, followed by a decomposition of OM in soils as indicated by the changes in soil chemical properties.

A survey of the microbial contamination level in butcher's shops in Seoul, Korea (서울지역 식육판매업소의 미생물 오염도 조사)

  • Yang, Yoon-Mo;Son, Jang-Won;Choi, Tae-Seok;Park, Mi-Ae;Kim, Ju-Young;Lee, Joo-Hyung;Shin, Bang-Woo
    • Korean Journal of Veterinary Service
    • /
    • v.36 no.3
    • /
    • pp.203-208
    • /
    • 2013
  • This survey was conducted to evaluate the microbial contamination level of butcher's shops in Seoul, Korea. For microbial inspections, a total of 584 samples (146 cotton work gloves, 146 utensils and equipments, 154 beef samples, 138 pork samples) were collected from butcher's shops. E. coli and pathogenic bacteria such as Staphylococcus aureus, Yersinia enterocolitica, Listeria monocytogenes, Salmonella spp., and E. coli O157:H7 were tested in the samples. As a result, the level of aerobic plate count (APC) ranged ${\leq}10^4\;CFU/cm^2$ from utensils and equipments, $10^1{\sim}10^9$ CFU/glove from cotton work gloves and ${\leq}10^6$ CFU/g from meat. The APC level of E. coli ranged ${\leq}10^1\;CFU/cm^2$ from utensils and equipments, ${\leq}10^5$ CFU/glove from cotton work gloves, and ${\leq}10^3$ CFU/g from meat, respectively. Staphylococcus aureus was detected in 2 beef samples, 1 pork sample, and 10 used cotton work gloves. Yersinia enterocolitica was detected in 3 beef samples, 1 pork sample, and 3 used cotton work gloves. Listeria monocytogenes was detected in 2 used cotton work gloves. In order to improve the sanitation status of butcher's shops, application of HACCP (Hazard Analysis Critical Control Point) or SSOP (Sanitation Standard Operating Procedure), regular hygiene education, and continuous monitoring for microorganisms will be required.

Different Response Mechanisms of Rhizosphere Microbial Communities in Two Species of Amorphophallus to Pectobacterium carotovorum subsp. carotovorum Infection

  • Min Yang;Ying Qi;Jiani Liu;Penghua Gao;Feiyan Huang;Lei Yu;Hairu Chen
    • The Plant Pathology Journal
    • /
    • v.39 no.2
    • /
    • pp.207-219
    • /
    • 2023
  • Soft rot is a widespread, catastrophic disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) that severely damages the production of Amorphophallus spp. This study evaluated the rhizosphere bacterial and fungal communities in Pcc-infected and uninfected plants of two species of Amorphophallus, A. muelleri and A. konjac. Principal component analysis showed that the samples formed different clusters according to the Pcc infection status, indicating that Pcc infection can cause a large number of changes in the bacterial and fungal communities in the Amorphophallus spp. rhizosphere soil. However, the response mechanisms of A. muelleri and A. konjac are different. There was little difference in the overall microbial species composition among the four treatments, but the relative abundances of core microbiome members were significantly different. The relative abundances of Actinobacteria, Chloroflexi, Acidobacteria, Firmicutes, Bacillus, and Lysobacter were lower in infected A. konjac plants than in healthy plants; in contrast, those of infected A. muelleri plants were higher than those in healthy plants. For fungi, the relative abundances of Ascomycota and Fusarium in the rhizosphere of infected A. konjac plants were significantly higher than those of healthy plants, but those of infected A. muelleri plants were lower than those of healthy plants. The relative abundance of beneficial Penicillium fungi was lower in infected A. konjac plants than in healthy plants, and that of infected A. muelleri plants was higher than that of healthy plants. These findings can provide theoretical references for further functional research and utilization of Amorphophallus spp. rhizosphere microbial communities in the future.