• Title/Summary/Keyword: Microbial stability

Search Result 316, Processing Time 0.031 seconds

Electricity Generation and De-contamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment (MFC의 금속 및 탄소전극에 의한 전기생산 특성과 오염저감 효과)

  • Kwon, Sung-Hyun;Song, Hyung-Jin;Lee, Eun-Mi;Cho, Dae-Chul;Rhee, In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.19 no.8
    • /
    • pp.951-960
    • /
    • 2010
  • Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. $0.57\;W/m^2$ Al/Graphite. Meanwhile, graphite-only electrodes produced max. $0.11\;W/m^2$ along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was $0.64\;W/m^2$. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5~36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.

The Effect of Far Infrared Ray-Vacuum Drying on the Quality Changes of Pimpinella bracycarpa (원적외선건조와 원적외선-진공건조를 이용한 참나물의 품질변화 특성)

  • 이명기;김상헌;함승시;이상영;정차권;강일준;오덕환
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.4
    • /
    • pp.561-567
    • /
    • 2000
  • This study was conducted to determine the effect of far infrared-vacuum drying on the quality changes of Pimpinella bracycarpa, such as drying efficiency (weight loss), color differences, browning degrees, rehydration and sensory evaluation. Wehn Pimpinella bracycarpa was dried for designated time at 5$0^{\circ}C$, 6$0^{\circ}C$ and 7$0^{\circ}C$, drying time of far infrared-vacuum drying was decreased more than 17% compared to that of infrared drying. The color changes increased as drying temperature increased and far infrared-vacuum drying made less color changes than infrared drying. Also, the total microbial counts and the number of yeast and mold were gradually reduced as drying temperature increased and drying time was longer, but there was no significant differences in microbial changes among drying methods. The rehydration rates of Pimpinella bracycarpa increased as drying temperature increased and was better at far infrared-vacuum drying than infrared drying. Also, according to the sensory evaluation after rehydration of Pimpinella bracycarpa, the hihger scores were obtained at lower temperature and far infrared-vacuum drying, especially the color was obtained much hihger score in the far infrared-vacuum drying than infrared drying. Thus, the results showed that drying efficiency and stability of rehydration and color changes was increased and the quality deterioration of Pimpinella bracycarpa could be minimized by using far infrared-vacuum drying.

  • PDF

Preparation of Branched-chain Amino Acid (BCAA)-enriched Hydrolysates from Corn Gluten (고 분지아미노산 함유한 옥수수 단백가수물의 제조조건 탐색)

  • Chung, Yong-Il;Bae, In-Young;Lee, Hyeon-Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • The process of the preparation of branched-chain amino acid (BCAA)-enriched hydrolysates from corn gluten was optimized through the parameters of pre-treatment (heating and cellulosic hydrolysis), hydrolysis method (acid, protease, and microbe plus protease), concentration, and spray drying condition. The protein yield of corn gluten was increased by heating and cellulase treatments. Among three different hydrolysis methods, the combined use of microbes and protease was the most effective in terms of free amino acid (FAA) and BCAA content of the corn gluten hydrolysates. In addition, the FAA and BCAA content in the hydrolysates prepared by microbial and enzymatic combined treatment were improved by a concentration process. Spray drying conditions for the preparation of the powder from the hydrolyzed reactant were an inlet temperature of $185^{\circ}C$, outlet temperature of $80^{\circ}C$, and the use of maltodextrin as an anticaking agent. Thus, this study established an economical process for preparation of value-added hydrolysates of excellent productivity and quality, in terms of high BCAA content and product stability.

Comparison of Microbial and Physico-chemical Quality Characteristics in Kimchi-fermented Sausages with Sodium Nitrite and Green Tea Extract (아질산염과 녹차 추출물의 첨가에 따른 김치 발효 소시지의 미생물 및 이화학적 품질 특성 비교)

  • Kang, Sun-Moon;Kim, Tae-Sil;Cho, Soo-Hyun;Park, Beom-Young;Lee, Sung-Ki
    • Journal of Animal Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.299-305
    • /
    • 2012
  • This study was conducted to compare the microbial and physico-chemical quality characteristics in Kimchi-fermented sausages added with sodium nitrite (SN) and green tea extract (GTE). The sausages were fermented at $24^{\circ}C$/RH 89% for 17 hr and then dried at $10^{\circ}C$/RH 70~80% for 9 days. The total bacteria count, lactic acid bacteria count and pH value ranged from 8.7 Log CFU/g sausage, 8.1~8.3 Log CFU/g sausage and 4.35~4.36, respectively, at 9 d of ripening, but did not show significant differences during ripening among all sausages. The lipid oxidation (TBARS) was inhibited by both GTE and SN, but GTE had lower (p<0.05) inhibitory effect, compared with SN. The $b^*$ value of GTE-added sausage was higher than that of the control sausage, but $a^*$ and $b^*$ values of SN-added sausage remained higher than other sausages during ripening. Therefore, it had lower effect on lipid oxidation and color stabilities than SN while GTE improved the lipid oxidation stability in Kimchi-fermented sausage. However, both GTE and SN did not influence the growth of lactic acid bacteria.

Microbial Changes of Salted and Fermented Shrimp by High Hydrostatic Pressure Treatment (초고압처리에 의한 새우젓의 미생물변화)

  • Mok, Chul-Kyoon;Song, Ki-Tae;Lee, Sang-Ki;Park, Jong-Hyun;Woo, Gun-Jo;Lim, Sang-Bin
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.349-355
    • /
    • 2000
  • This study was conducted to enhance the storage stability of fermented shrimp with different salt contents using a high hydrostatic pressure. The effects of the magnitude of pressure and treatment time on the microorganisms of the fermented shrimp were investigated. The highest microbial counts with respect to the salt levels were observed at 18% salt, showing $3.4{\times}10^5\;CFU/g$ for general bacteria, $6.4{\times}10^4\;CFU/g$ for halophilic bacteria, $4.2{\times}10^5\;CFU/g$ for yeast and $3.0{\times}10^4\;CFU/g$ for halophilic yeast. The degree of sterilization increased with the magnitude of pressure and treatment time, and the sterilization could be analyzed by the first order reaction kinetics. The sterilization rate constants $(k_p)$ of the halophilic bacteria was lower than that of general bacteria. The $log(k_p)$ increased linearly with pressure and the slope of the regression line of the halophilic bacteria was greater than that of general bacteria, indicating that the sterilization of the halophilic bacteria was more dependent on the pressure. High hydrostatic pressure treatment was an effective non-thermal sterilization method for the salted and fermented shrimp, and the optimum treatment condition was for 10 min at 6,500 atm.

  • PDF

Effects on microbial diversity of fermentation temperature (10℃ and 20℃), long-term storage at 5℃, and subsequent warming of corn silage

  • Zhou, Yiqin;Drouin, Pascal;Lafreniere, Carole
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1528-1539
    • /
    • 2019
  • Objective: To evaluate the effects on microbial diversity and biochemical parameters of gradually increasing temperatures, from $5^{\circ}C$ to $25^{\circ}C$ on corn silage which was previously fermented at ambient or low temperature. Methods: Whole-plant corn silage was fermented in vacuum bag mini-silos at either $10^{\circ}C$ or $20^{\circ}C$ for two months and stored at $5^{\circ}C$ for two months. The mini-silos were then subjected to additional incubation from $5^{\circ}C$ to $25^{\circ}C$ in $5^{\circ}C$ increments. Bacterial and fungal diversity was assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) profiling and biochemical analysis from mini-silos collected at each temperature. Results: A temperature of $10^{\circ}C$ during fermentation restricted silage fermentation compared to fermentation temperature of $20^{\circ}C$. As storage temperature increased from $5^{\circ}C$ to $25^{\circ}C$, little changes occurred in silages fermented at $20^{\circ}C$, in terms of most biochemical parameters as well as bacterial and fungal populations. However, a high number of enterobacteria and yeasts (4 to $5\;log_{10}$ colony forming unit/g fresh materials) were detected at $15^{\circ}C$ and above. PCR-DGGE profile showed that Candida humilis predominated the fungi flora. For silage fermented at $10^{\circ}C$, no significant changes were observed in most silage characteristics when temperature was increased from $5^{\circ}C$ to $20^{\circ}C$. However, above $20^{\circ}C$, silage fermentation resumed as observed from the significantly increased number of lactic acid bacteria colonies, acetic acid content, and the rapid decline in pH and water-soluble carbohydrates concentration. DGGE results showed that Lactobacillus buchneri started to dominate the bacterial flora as temperature increased from $20^{\circ}C$ to $25^{\circ}C$. Conclusion: Temperature during fermentation as well as temperature during storage modulates microorganism population development and fermentation patterns. Silage fermented at $20^{\circ}C$ indicated that these silages should have lower aerobic stability at opening because of better survival of yeasts and enterobacteria.

Fermentation Characteristics of Large-scale Coenzyme Q10 Expressing Rhodobacter spharoides in Rumen Simulated Continuous Culture (RSCC) System (Coenzyme Q10 다량 발현 미생물을 이용한 Rumen Simulation Continuous Culture (RSCC) System 반추위 내 미생물 발효 특성에 대한 연구)

  • Bae, G.S.;Yeo, J.M.;Chang, M.B.;Kim, J.N.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.19 no.1
    • /
    • pp.139-151
    • /
    • 2017
  • This study was conducted to confirm the rumen fermentation characteristics of large-scale CoenzymeQ10(CoQ10) producing bacteria R. spharoides in rumen. We conducted in vitro continuous culture test to investigate the characteristics of rumen fermentation with 5% R. spharoides as a direct fed microorganism. A rumen microbial fermentation characteristic has stability at after 12 days for 15 day of experimental period. pH value, NH3-N, microbial protein synthesis, ADF digestibility and NDF digestibility were not shown significantly differences between control and treatment. However, UDP was significantly higher in treatment than control (p<0.05). CoQ10 concentration was 336.0mg/l with 5% R. spharoides. On the other hands, CoQ10 was not detected without R. spharoides. Our study was shown that R. spharoides can produce CoQ10 in rumen environment without harmful effects on rumen fermentation parameter. CoQ10 in rumen may transfer into cow milk through cow metabolism. This strategy might be helpful for producing functional dairy cow milk.

Effects on the Rumen Microbial Fermentation Characteristics of Lignosulfonate Treated Soybean Meal (Lignosulfonate처리 대두박의 반추위 내 미생물 발효특성에 미치는 영향)

  • Lee, Hun-Jong;Lee, Seung-Heon;Bae, Gui-Seck;Park, Je-Hwan;Chang, Moon-Baek
    • Journal of Animal Science and Technology
    • /
    • v.52 no.5
    • /
    • pp.413-426
    • /
    • 2010
  • This study was conducted to investigate the effects on fermentation characteristics of rumen microorganism by different types and levels of lignosulfonate treated soybean meal (LSBM) in in vitro test and rumen simulation continuous culture (RSCC) system in dairy cows. The experiment I was control and 12 treatments (each with 3 replications) in vitro test to demonstrate composition of different types of treatments with lignosulfonate (Desulfonate, Na, Ca and solution) and levels (2, 4 and 8%) of soybean meal in the dairy cow diet. LSBM source treatments in the dairy cow diet showed pH value, $NH_3$-N concentration and total VFA concentration lower than control at all levels and incubation times (p<0.05). Dry matter digestibility of LSBM source treatments showed lower than control (p<0.05). Gas production and rumen microbial synthesis was decreased by rumen microbial fermentation for incubation times. Undegradable protein (UDP) concentration of all LSBM treatments was decreased for incubation times, and significantly higher than control (p<0.05). In the experiment II compared diets of the control, LSBM Na 2%, LSBM Sol 2%, which are high performance to undegradable protein (UDP) concentration experiment I in vitro test, and heated treatment lignosulfonate (LSBM Heat) 2% in the dairy cow diet from four station RSCC system ($4{\times}4$ Latin square). A rumen microbial fermentation characteristic was stability during 12~15 days of experimental period in all treatments. The pH value of LSBM treatments was higher than control treatment (p<0.05). The $NH_3$-N concentration, VFA concentration and rumen microbial synthesis of LSBM treatments were lower than control (p<0.05). The undegradable protein (UDP) showed LSBM Na 2% (45.28%), LSBM Sol 2% (43.52%) and LSBM Heat 2% (43.49%) higher than control (41.55%), respectively (p<0.05). Those experiments were designed to improve by-pass protein of diet and milk protein in the dairy cows. We will conduct those experiments the in vivo test by LSBM treatments in dairy cows diet.

Improved Biosurfactant Production by Bacillus subtilis SPB1 Mutant Obtained by Random Mutagenesis and Its Application in Enhanced Oil Recovery in a Sand System

  • Bouassida, Mouna;Ghazala, Imen;Ellouze-Chaabouni, Semia;Ghribi, Dhouha
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.95-104
    • /
    • 2018
  • Biosurfactants or microbial surfactants are surface-active biomolecules that are produced by a variety of microorganisms. Biodegradability and low toxicity have led to the intensification of scientific studies on a wide range of industrial applications for biosurfactants in the field of environmental bioremediation as well as the petroleum industry and enhanced oil recovery. However, the major issues in biosurfactant production are high production cost and low yield. Improving the bioindustrial production processes relies on many strategies, such as the use of cheap raw materials, the optimization of medium-culture conditions, and selecting hyperproducing strains. The present work aims to obtain a mutant with higher biosurfactant production through applying mutagenesis on Bacillus subtilis SPB1 using a combination of UV irradiation and nitrous acid treatment. Following mutagenesis and screening on blood agar and subsequent formation of halos, the mutated strains were examined for emulsifying activity of their culture broth. A mutant designated B. subtilis M2 was selected as it produced biosurfactant at twice higher concentration than the parent strain. The potential of this biosurfactant for industrial uses was shown by studying its stability to environmental stresses such as pH and temperature and its applicability in the oil recovery process. It was practically stable at high temperature and at a wide range of pH, and it recovered above 90% of motor oil adsorbed to a sand sample.

Meat Quality and Storage Characteristics of Pork Loin Marinated in Grape Pomace

  • Lee, Hyun-Joo;Lee, Jae-Joon;Jung, Myung-Ok;Choi, Jung-Seok;Jung, Ji-Taek;Choi, Yang-Il;Lee, Jin-Kyu
    • Food Science of Animal Resources
    • /
    • v.37 no.5
    • /
    • pp.726-734
    • /
    • 2017
  • This study investigated the meat quality and storage characteristics of pork loin marinated in grape pomace powder during different storage periods. The experimental design included six treatments : pork loin containing only 100% water (Control, C); pork loin containing a combination of 20% grape pomace and 80% water (T1); pork loin containing a combination of 40% grape pomace and 60% water (T2); pork loin containing a combination of 0.5% grape pomace powder and 95.5% water (T3); pork loin containing a combination of 1.0% grape pomace powder and 99.0% water (T4); and pork loin containing a combination of 2.0% grape pomace powder and 98.0% water (T5). The pork loins aged by grape pomace and grape pomace powder showed decreased crude protein, crude fat, crude ash, pH, redness, and yellowness values; however, their moisture, lightness, and shear force increased significantly. During cold storage, marination with grape pomace and grape pomace powder reduced the 2-thiobarbituric acid value, volatile basic nitrogen value, and total microbial count in pork loin. Thus, marination with grape pomace and grape pomace powder improved the meat quality and storage characteristics, and could be used to improve storage stability of pork loin.