• Title/Summary/Keyword: Microbial stability

Search Result 314, Processing Time 0.026 seconds

Immobilization of Laccase on $SiO_2$ Nanocarriers Improves Its Stability and Reusability

  • Patel, Sanjay K.S.;Kalia, Vipin C.;Choi, Joon-Ho;Haw, Jung-Rim;Kim, In-Won;Lee, Jung Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.5
    • /
    • pp.639-647
    • /
    • 2014
  • Laccases have a broad range of industrial applications. In this study, we immobilized laccase on $SiO_2$ nanoparticles to overcome problems associated with stability and reusability of the free enzyme. Among different reagents used to functionally activate the nanoparticles, glutaraldehyde was found to be the most effective for immobilization. Optimization of the immobilization pH, temperature, enzyme loading, and incubation period led to a maximum immobilization yield of 75.8% and an immobilization efficiency of 92.9%. The optimum pH and temperature for immobilized laccase were 3.5 and $45^{\circ}C$, respectively, which differed from the values of pH 3.0 and $40^{\circ}C$ obtained for the free enzyme. Immobilized laccase retained high residual activities over a broad range of pH and temperature. The kinetic parameter $V_{max}$ was slightly reduced from 1,890 to 1,630 ${\mu}mol/min/mg$ protein, and $K_m$ was increased from 29.3 to 45.6. The thermal stability of immobilized laccase was significantly higher than that of the free enzyme, with a half-life 11- and 18-fold higher at temperatures of $50^{\circ}C$ and $60^{\circ}C$, respectively. In addition, residual activity was 82.6% after 10 cycles of use. Thus, laccase immobilized on $SiO_2$ nanoparticles functionally activated with glutaraldehyde has broad pH and temperature ranges, thermostability, and high reusability compared with the free enzyme. It constitutes a notably efficient system for biotechnological applications.

Long-term Repeated-Batch Operation of Immobilized Escherichia coli Cells to Synthesize Galactooligosaccharide

  • Lee, Sang-Eun;Yeon, Ji-Hyeon;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.11
    • /
    • pp.1486-1493
    • /
    • 2012
  • In this study, we investigated whether galactooligosaccharide (GOS) can be stably and steadily synthesized using immobilized ${\beta}$-galactosidase (${\beta}$-gal) inclusion body (IB)-containing E. coli cells during long-term repeated-batch operation. To improve the operational stability of this enzyme reactor system, immobilized E. coli cells were crosslinked with glutaraldehyde (GA) after immobilization of the E. coli. When we treated with 2% GA for E. coli crosslinking, GOS production continued to an elapsed time of 576 h, in which seven batch runs were operated consecutively. GOS production ranged from 51.6 to 78.5 g/l ($71.2{\pm}10.5$ g/l, n = 7) during those batch operations. In contrast, when we crosslinked E. coli with 4% GA, GOS production ranged from 31.5 to 64.0 g/l ($52.3{\pm}10.8$, n = 4), and only four consecutive batch runs were operated. Although we did not use an industrial ${\beta}$-gal for GOS production, in which a thermophile is used routinely, this represents the longest operation time for GOS production using E. coli ${\beta}$-gal. Improved stability and durability of the cell immobilization system were achieved using the crosslinking protocol. This strategy could be directly applied to other microbial enzyme reactor systems using cell immobilization to extend the operation time and/or improve the reactor system stability.

Development of Bioavailability Enhancement System for the Skin Permeation Promotion of Psolarea corylifolia Extract (보골지 추출물의 피부 투과 촉진 시스템 개발)

  • Cho, Young-Ho;Ahn, Ghe-Whan;Yang, Seung-Won;Cho, Kwan-Hyun;Kim, Sang-Won;Baek, Ki-Myoung;Lee, Gye-Won
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.505-512
    • /
    • 2011
  • Psolarea corylifolia extract that contains bakuchiol is known to have anti-microbial, anti-inflammatory and anti-scarring effects. In this study, a vesicles such as liposome, niosome, and transfersome were produced to encapsulate P. corylifolia extract and measured their stability and physiochemical property. The skin permeation and partitioning of P. corylifolia extract in the vesicles were elucidated in nude mouse skin by using Franz diffusion cells after topical application for 24 h. After storage at 25, 40, $70^{\circ}C$, and light, the stability of bakuchiol incorporated into the vesicles was maintained for 30 days. The optimal concentration of P. corylifolia extract entrapped into the vesicles was found to be 5~10%. From the physicochemical studies, after storage at 4, 25, and $40^{\circ}C$, the viscosity and particle size of the vesicles remained in 30~80 cP and the nanosize range for 6 months, respectively. From the permeation experiments, niosome showed a higher amount of bakuchiol permeated through the mouse skin compared to liposome and transfersome after 24 h. From these results, niosome and transfersome could be a good bioavailability enhancement system (BAES) for P. corylifolia extract to improve the skin permeation and stability.

A Novel Trp-rich Model Antimicrobial Peptoid with Increased Protease Stability

  • Bang, Jeong-Kyu;Nan, Yong-Hai;Lee, Eun-Kyu;Shin, Song-Yub
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2509-2513
    • /
    • 2010
  • In order to increase protease stability of a novel Trp-rich model antimicrobial peptide, $K_6L_2W_3$ (KLWKKWKKWLK-$NH_2$)and investigate the effect of L-amino acid to peptoid residue conversion on biological functions, we synthesized its antimicrobial peptoid, $k_6l_2w_3$. Peptoid $k_6l_2w_3$ had similar bacterial selectivity compared to peptide $k_66L_2W_3$. The bactericidal rate of $k_6l_2w_3$ was somewhat slower than that of $K_6L_2W_3$. Peptoid $k_6l_2w_3$ exhibited very little dye leakage from bacterial outer-membrane mimicking PE/PG liposomes, as observed in $K_6L_2W_3$, indicating that the major target site of $K_6L_2W_3$ and $k_6l_2w_3$ may be not the cell membrane but the cytoplasm of bacteria. Trypsin treatment of $K_6L_2W_3$ completely abolished antimicrobial activities against Escherichia coli and Staphylococcus aureus. In contrast, the antimicrobial activity of $k_6l_2w_3$ was completely preserved after trypsin treatment. Taken together, our results suggested that antimicrobial peptoid $k_6l_2w_3$ can potentially serves as a promising therapeutic agent for the treatment of microbial infection.

Fermentation Characteristics and Lactic Acid Bacteria Succession of Total Mixed Ration Silages Formulated with Peach Pomace

  • Hu, Xiaodong;Hao, Wei;Wang, Huili;Ning, Tingting;Zheng, Mingli;Xu, Chuncheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.4
    • /
    • pp.502-510
    • /
    • 2015
  • The objective of this study was to assess the use of peach pomace in total mixed ration (TMR) silages and clarify the differences in aerobic stability between TMR and TMR silages caused by lactic acid bacteria (LAB). The TMR were prepared using peach pomace, alfalfa hay or Leymus chinensis hay, maize meal, soybean meal, cotton meal, limestone, a vitamin-mineral supplement, and salt in a ratio of 6.0:34.0:44.4:7.0:5.0:2.5:1.0:0.1 on a dry matter (DM) basis. Fermentation quality, microbial composition, and the predominant LAB were examined during ensiling and aerobic deterioration. The results indicated that the TMR silages with peach pomace were well fermented, with low pH and high lactic acid concentrations. The aerobic stability of TMR silages were significantly higher than that of TMR. Compared with TMR silages with alfalfa hay, TMR silage with Leymus chinensis hay was much more prone to deterioration. Although the dominant LAB were not identical in TMR, the same dominant species, Lactobacillus buchneri and Pediococcus acidilactici, were found in both types of TMR silages after 56 d of ensiling, and they may play an important role in the aerobic stability of TMR silages.

Quality Changes of Canned Tuna in Cottonseed Oil during Storage (참치 기름담금 통조림의 저장중의 품질변화)

  • CHO Hyun-Duck;KIM Sang-Ho;LIM Jin-Young;HAN Bong-Ho;JUNG Cha-Gyun;RYU Hong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.3
    • /
    • pp.287-295
    • /
    • 1996
  • To fulfill the requirements for establishing processes of canning low-acid foods, canned tuna packed in cottonseed oil (CTCO) sterilized at $110^{\circ}C$ for varying $F_0-values$ was subjected to microbial, sensory and chemical analyses. The investigation included the long-term quality stability of those products stored at $5^{\circ}C,\;25^{\circ}C\;and\;50^{\circ}C$ for 120 days. Longer sterilization $(F_0>5.18min)$ caused no remarkable changes in pH, amino nitrogen content, TBA value, POV and sensory scores of the CTCOs during storage at all experimental temperatures. But the sterilizing with $Fe\leq5.18min$ resulted generally poor quality in all experimental analyses. Consequently, $F_0-value$ 6.0 min may be applicable to sterilization of CTCO for long-term storage stability.

  • PDF

Processing Properties of DL-Phenylalanine in Aqueous Solution (DL-Phenylalanine의 수용액내 가공특성)

  • Kim, In-Ho;Shin, Ji-Young;Han, Dae-Seok;Park, Yong-Kon;Kim, Young-Eon;Lee, Chang-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.2
    • /
    • pp.246-249
    • /
    • 2007
  • DL-phenylalanine (DLPA) is known as an essential amino acid exhibiting opiate capacities by inhibiting the degradation of enkephalins. From the viewpoint of developing a drink containing DLPA, its solubility and stability in aqueous solutions were investigated at some processing conditions such as temperature and pH. When the solubility was analyzed by transmittance at 600 nm, the solutions containing DLPA of 0.1% to 2% showed transmittance over 98% above $60^{\circ}C$ and over 99% at wide range of pH (3.0, 7.0, and 10.0). The valuable stability was also recognized through HPLC analysis for DLPA content, that is, 61-71% DLPA was still remained even after processing at high temperature and wide pH range, indicating the possibility of de-velopment of drink containing DLPA. Among flavors considered for the improvement of consumers' acceptability on drink, orange and amino acid flavors were superior to others. Microbial growth was not detected during 6-week storage after drink preparation.

Storage Stability and Shelf Life Characteristics of Korean Savory Sauce Products

  • Yun, Jung-Hyun;Cha, Yong-Jun;Lee, Dong-Sun
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.242-250
    • /
    • 2007
  • This study evaluated the storage stability of a variety of sauce products in the Korean market, determined primary quality indices for three typical products, and proposed functional relationships that are useful for determining shelf life at different temperatures. Most of the products examined were found to combine hurdles of low pH, low water activity, and the use of heat processing as methods for producing the required storage stability while maintaining the sensory quality of the products. For a meat extract solution produced for cold noodles (pH=4.3; $a_w=0.98$), the primary quality change determining shelf life was lipid oxidation, determined here by the TBA value. The primary quality index of a soybean paste seasoning mix (pH=4.0; $a_w=0.78$), which had a microbial load of 2.8 log (CFU/g), was a decrease in its pH. The primary quality index for a sandwich spread (pH=4.0; $a_w=0.88$) was changes in its surface color. The temperature dependence of changes in the primary quality indices can be described by the Arrhenius equation, which can estimate the shelf life at any arbitrary limit as a function of temperature. The activation energies for changes in the primary quality indices of the meat extract solution, the soybean paste seasoning, and the sandwich spread were 20.3, 27.2, and 43.5 kJ/mol, respectively.

Preparation of Nanomaterial Wettable Powder Formulations of Antagonistic Bacteria from Phellodendron chinense and the Biological Control of Brown Leaf Spot Disease

  • Zeng, Yanling;Liu, Han;Zhu, Tianhui;Han, Shan;Li, Shujiang
    • The Plant Pathology Journal
    • /
    • v.37 no.3
    • /
    • pp.215-231
    • /
    • 2021
  • Brown leaf spot disease caused by Nigrospora guilinensis on Phellodendron chinense occurs in a large area in Dayi County, Chengdu City, Sichuan Province, China each year. This outbreak has severely reduced the production of Chinese medicinal plants P. chinense and caused substantial economic losses. The bacterial isolate JKB05 was isolated from the healthy leaves of P. chinense, exhibited antagonistic effects against N. guilinensis and was identified as Bacillus megaterium. The following fermentation medium and conditions improved the inhibitory effect of B. megaterium JKB05 on N. guilinensis: 2% glucose, 0.1% soybean powder, 0.1% KCl, and 0.05% MgSO4; initial concentration 6 × 106 cfu/ml, and a 42-h optimal fermentation time. A composite of 0.1% nano-SiO2 JKB05 improved the thermal stability, acid-base stability and ultraviolet resistance by 16%, 12%, and 38.9%, respectively, and nano-SiO2 was added to the fermentation process. The best formula for the wettable powder was 35% kaolin, 4% polyethylene glycol, 8% Tween, and 2% humic acid. The following quality test results for the wettable powder were obtained: wetting time 87.0 s, suspension rate 80.33%, frequency of microbial contamination 0.08%, pH 7.2, fineness 95.8%, drying loss 1.47%, and storage stability ≥83.5%. A pot experiment revealed that the ability of JKB05 to prevent fungal infections on P. chinense increased considerably and achieved levels of control as high as 94%. The use of nanomaterials significantly improved the ability of biocontrol bacteria to control this disease.

Purification and Characterization of Bioemulsifier Produced by Acinetobacter sp. BE-254

  • Kim, Soon-Han;Lee, Jae-Dong;Kim, Boo-Chul;Lee, Tae-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.184-188
    • /
    • 1996
  • The Acinetobacter sp. BE-254 isolated from soil sources produced a bioemulsifier in the medium supplemented with n-hexadecane. This bioemulsifier was purified by the procedures of fractionation (ammonium sulfate and chilled acetone), extraction by hexane, and column chromatography on silica gel 60. The results from various color reactions indicated that the bioemulsifier was a glycolipid. The purified emulsifier was very stable at pHs ranging from 4 to 10 and under heat treatment at $100^{\circ}C$ for 30 min. Emulsification activity was also hardly influenced by pH. The critical micelle concentration (CMC) and surface tension at the point ($\gamma_{cmc}$) of the bioemulsifier were approximately 35 mg/l and 30 mN/m, respectively. The bioemulsifier showed a fairly good emulsification activity and stability in comparison with other commercial emulsifiers in the basic formula composed of emulsifier, oil, and water.

  • PDF