• Title/Summary/Keyword: Microbial spoilage

Search Result 103, Processing Time 0.024 seconds

Antimicrobial Activity of Electrolyzed Alkaline Water against Spoilage of Microorganisms in Rice Warehouses (미곡창고 오염균주에 대한 전해알칼리수의 항균효과)

  • Kim, Jin-Hee;Lee, So-Young;Kim, Kotch-Bong-Woo-Ri;Song, Eu-Jin;Kim, Ah-Ram;Park, Sun-Mee;Han, Chung-Soo;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.1
    • /
    • pp.111-116
    • /
    • 2007
  • We examined the antimicrobial activity of electrolyzed alkaline water against spoilage microorganisms in rice warehouses. Dominant microbial species were isolated from paddy, dust and air samples of three different warehouses located in Gyeongnam. We used electrolyzed alkaline water (EW) manufactured over various treatment times. The acidities (pH) of EW treated for 30 sec, 1, 2, 3, and 4 min were 8.89, 8.91, 9.20, 9.35, and 9.22, respectively. HClO contents were 150.7, 314.2, 191.8, 104.1, and 255.3 ppm, respectively. EW inhibited bacteria, yeasts, and molds; also, it inhibited three yeast species strongly. The antimicrobial effects of EW increased as pH values and HClO contents increased. EW obtained after 30 sec treatment retained the antimicrobial activities after 14 days whereas EW obtained after 1 and 2 min treatments retained the antimicrobial activities after 21 and 24 days, respectively.

Bacterial Studies on the Subsidiary Materials of Fish Sausage (어육소시지 부원료에 대한 세균학적 연구)

  • 조갑숙;김성준;이응호
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.3
    • /
    • pp.155-166
    • /
    • 1980
  • Studies have teen undertaken to investigate the degree of microbial contamination in the subsidiary materials which have been known as an important source of microorganisms associated with spoilage of fish sausage and fish paste products. Twenty hinds of food ingredients including starch, spices and condiments, 59 samples in total collected from commercial fish sausage processing plants and supermarket in the period of July to October 1979, were examined for standard plate count, coliform and fecal coliform, mold and yeast, thermoduric microorganisms, aerobic sporeformers (mesophilic and thermophilic), anaerobic sporeformers (mesophilic and thermophilic) and sulfide spoilage anaerobes. The results obtained are summarized as follows. 1. Among the food ingredients examined, corn starch, black pepper, hot pepper, onion, garlic, ginger, beef extract and frank marked high bacterial contamination with general and sporeforming microorganisms. And bacterial content of marked samples were generally higher than that of the samples from plants. 2. The high standard plate count caused by high content of these bacteria like thermoduric, mesophilic or thermophilic sporeforming aerobes. 3. Bacterial content of food ingredients such as black pepper and beef extract being used in plants, and black pepper, hot pepper, onion and garlic from the market were exceeded the bacterial standards being enforced in Japan and U. S. A. 4. Average standard plate count was in the range of 10$^4$to 10$^{5}$ /g for black pepper, wheat flour, onion and garlic collected from plants, and 10$^{5}$ to 10$^{7}$ /g for black pepper, hot pepper, onion and garlic from market. No plate count was observed in pepper essence and coloring material. 5. Coliform organism was detected in starch, black pepper, hot pepper, onion, garlic, ginger and gluten that showed high standard plate but no fecal coliform in the samples except black pepper and hot pepper. 6. Average mold and yeast count was 140 to 460/g for corn starch, wheat flour and black pepper from plants, and 10$^3$/g for black pepper and hot pepper from market. No count was observed in the other ingredients. 7. Sulfide spoilage sporeforming anaerobes boiled for 5 min. at 10$0^{\circ}C$ and incubated at 55$^{\circ}C$ was not detected in all the samples examined.

  • PDF

Reduction of Microflora in the Manufacture of Saengshik by Hygienic Processing

  • Bang, Woo-Seok;Eom, Young-Rhan;Oh, Deog-Hwan
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.3
    • /
    • pp.167-172
    • /
    • 2007
  • This study was conducted to determine the effect of hygienic processing (HP) on the reduction of microorganisms during manufacturing of saengshik with two vegetables (carrots and cabbage) and two grains (barely and glutinous rice) compared to general processing (GP). For GP, distilled water was used for washing raw materials and equipment. For HP, aqueous ozone (3 ppm) in combination with 1% citric acid and 70% alcohol were used for washing raw materials and the equipment, respectively. In carrots, after cutting, total aerobic bacteria (TAB), yeast and mold (YM) and coliforms were significantly increased to 5.19, 8.04 and 2.08 ($log_{10}$ CFU/g), respectively (p<0.05). Washing effectively reduced the increased microorganisms from cross contamination during cutting, but cross contamination increased with subsequent GP drying and milling procedures to 8.56, 8.27 and 3.71 ($log_{10}$ CFU/g) for TAB, YM and coliforms, respectively (p<0.05). On the other hand, HP washing of carrots with 3 ppm ozone in combination with 1% citric acid showed higher antimicrobial effect than GP washing, significantly decreasing the number of microorganisms (p<0.05). Further cross contamination did not occur through drying and milling due to cleaning the equipments with 70% alcohol prior to processing. After milling, the number of TAB, YM and coliforms were significantly decreased to 3.89, 4.47 and not detectable level ($log_{10}$ CFU/g), respectively (p<0.05). Similar results were observed in cabbage and grains. During storage for two months at different temperatures (22 or $4^{\circ}C$), there were no changes in numbers of spoilage microorganisms in the packaged saengsik after either processing. This suggests the importance of HP for the reduction of microorganisms during saengsik production, and demonstrates the effectiveness of disinfection at each processing stage in minimizing contamination levels to enhance microbial safety of saengshik products.

A Non-yeast Kefir-like Fermented Milk Development with Lactobacillus acidophilus KCNU and Lactobacillus brevis Bmb6

  • Lee, Bomee;Yong, Cheng-Chung;Yi, Hae-Chang;Kim, Saehun;Oh, Sejong
    • Food Science of Animal Resources
    • /
    • v.40 no.4
    • /
    • pp.541-550
    • /
    • 2020
  • The use of yeast assist kefir fermentation, but also can cause food spoilage if uncontrolled. Hence, in this study, the microbial composition of an existing commercial kefir starter was modified to produce a functional starter, where Lactobacillus acidophilus KCNU and Lactobacillus brevis Bmb6 were used to replace yeast in the original starter to produce non-yeast kefir-like fermented milk. The functional starter containing L. acidophilus KCNU and L. brevis Bmb6 demonstrated excellent stability with 1010 CFU/g of total viable cells throughout the 12 weeks low-temperature storage. The newly developed functional starter also displayed a similar fermentation efficacy as the yeast-containing control starter, by completing the milk fermentation within 12 h, with a comparable total number of viable cells (108 CFU/mL) in the final products, as in control. Sensory evaluation revealed that the functional starter-fermented milk highly resembled the flavor of the control kefir, with enhanced sourness. Furthermore, oral administration of functional starter-fermented milk significantly improved the disease activity index score by preventing drastic weight-loss and further deterioration of disease symptoms in DSS-induced mice. Altogether, L. acidophilus KCNU and L. brevis Bmb6 have successfully replaced yeast in a commercial starter pack to produce a kefir-like fermented milk beverage with additional health benefits. The outcome of this study provides an insight that the specific role of yeast in the fermentation process could be replaced with suitable probiotic candidates.

Antimicrobial Characteristic of Prunus mune extract (매실추출물의 항균특성)

  • Ha Myung-Hee;Park Woo-Po;Lee Seung-Cheol;Choi Sung-Gil;Cho Sung-Hwan
    • Food Science and Preservation
    • /
    • v.13 no.2
    • /
    • pp.198-203
    • /
    • 2006
  • Prunus mume extract showed antimicrobial efface remarkably against the wide spectrum of putrefactive and food spoilage microorganisms above 250 ppm of concentration. Their thermal and pH stabilities were effective under the range of temperature $(40^{\circ}C{\sim}120^{\circ}C)$ and $pH(3{\sim}11)$. Prunus mume extract seemed to be a natural antimicrobial ideally with the view of their effectiveness and thermal & pH stabilities. In addition, their action modes suggested that their hydrophillic components would perturb the fucntions of microbial cell membranes synergistically.

Microbial Decontamination of Refrigerated Red Seabream by Acetic, Lactic, and Citric Acids (초산, 유산 및 구연산에 의한 냉장 돔의 오염 미생물 제거)

  • 김창렬;김정숙;고대희;이순자;은종방
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.2
    • /
    • pp.263-267
    • /
    • 1997
  • Red seabream strips were decontaminated by dipping with solutions of 0.25~1.0% acetic, lactic, or citric acids for 5min. Control strips were dipped with tap water only for 5min. All strips were individually placed in plastic bags and stored at 4$^{\circ}C$. Acetic acid(AA) treatments were completely inhibited aerobic spoilage bacteria(areobic plate count : APC) compared to the initial controls for 6 days. Treatments of either lactic acid(LA) or citric acid(CA) completely inhibited APC compared to the initial controls for 3 days. Red seabream strips treated with AA extended microbiological shelf-life for 12 days.

  • PDF

Enhancement of antimicrobial properties of shoe lining leather using chitosan in leather finishing

  • Mahmud, Yead;Uddin, Nizam;Acter, Thamina;Uddin, Md. Minhaz;Chowdhury, A.M. Sarwaruddin;Bari, Md. Latiful;Mustafa, Ahmad Ismail;Shamsuddin, Sayed Md.
    • Advances in materials Research
    • /
    • v.9 no.3
    • /
    • pp.233-250
    • /
    • 2020
  • In this study, a chitosan based coating method was developed and applied on the shoe lining leather surface for evaluating its inhibition to bacterial and fungal attacks. At first, chitosan was prepared from raw prawn shells and then the prepared chitosan solution was applied onto the leather surface. Secondly, the characterization of the prepared chitosan and chitosan treated leather was performed by solubility test, ATR-FTIR, XRD pattern, SEM and TGA. Evaluation of antimicrobial efficacy of chitosan was assessed against two gram positive, two gram negative bacteria and a reputed fungi by agar diffusion test. The results of this study demonstrated that chitosan took place in both the surface of collagen fibres and inside the collagen matrix of crust leather. The chitosan showed strong antimicrobial activities against all the tested microorganisms and the inhibition increased with increasing percentage of chitosan. Therefore, the prepared chitosan in this study can be an environment friendly biocide, which functions simultaneously against different spoilage bacteria and fungi on the finished leather surface. Thus by using the prepared chitosan in shoe lining leather, the possibility of microbial attack during shoe wearing can be minimized which is one of the important hygienic requirements of footwear.

Prevention of Fungal Contamination during Cheese Ripening - Current Situation and Future Prospects (치즈 숙성 중의 곰팡이 오염 방제 - 현황과 전망)

  • Jung, Hoo Kil;Choi, Ha Nuel;Oh, Hyun Hee;Huh, Chang Ki;Yang, Hee Sun;Oh, Jeon Hui;Park, Jong Hyuk;Choi, Hee Young;Kim, Kyoung Hee;Lee, Seung Gu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Molds cause severe cheese deterioration, even though some white and blue molds are used for the manufacture of Camembert and Blue cheese, respectively. The species of Geotrichum, Moniliella, Aspergillus, Penicillium, Mucor, Fusarium, Phoma, and Cladosporium are the main fungi that affect contamination during cheese ripening. Once deteriorated by fungal spoilage, cheese becomes toxic and inedible. Fungal deterioration of cheese decreases the nutritional value, flavor profiles, physicochemical and organoleptic properties, and increases toxicity and infectious disease. Fungal contamination during cheese ripening is highly damaging to cheese production in Korean farmstead milk processing companies. Therefore, these companies hesitate to develop natural and ripened cheese varieties. This article discusses the recent and ongoing developments in the removal techniques of fungal contamination during cheese ripening. There are 2 categories of antifungal agents: chemical and natural. Major chemical agents are preservatives (propionic acid, sodium propionate, and calcium propionate) and ethanol. Among the natural agents, grapefruit seed extract, phytoncide, essential oils, and garlic have been investigated as natural antifungal agents. Additionally, some studies have shown that antibiotics such as natamycin and Delvocid$^{(R)}$, have antifungal activities for cheese contaminated with fungi. Microbial resources such as probiotic lactic acid bacteria, Propionibacterium, lactic acid bacteria from Kimchi, and bacteriocin are well known as antifungal agents. In addition, ozonization treatment has been reported to inhibit the growth activity of cheese-contaminating fungi.

  • PDF

Characteristics of digestive enzyme activity, antibiotic resistance, and pathogenicity of bacteria inhabited in animal feed resources (사료자원에 서식하는 세균의 소화효소활성, 항생제내성 및 병원성에 관한 특성)

  • Yi, Kwon Jung;Cho, Sang Seop;Kim, Soo-Ki
    • Korean Journal of Veterinary Service
    • /
    • v.40 no.2
    • /
    • pp.119-131
    • /
    • 2017
  • Among different types of spoilage, microbial contamination can cause feed decomposition, which results in decreases in feed intake and productivity, infection, and breeding disorder. During the storage time, various microbes have a chance to inoculate with depreciation of feed and to infect the animals. We investigated bacteria that inhabit diverse feed ingredients and complete feed which have been stored for a few months. We isolated and identified 30 genera and 62 species of bacteria. Among these 62 species, 21 species were of non-pathogenic bacteria, 18 species were of pathogenic bacteria, 9 species were of opportunistic pathogens, and 14 species were of unknown bacteria. Pantoea allii and 24 species showed proteolytic enzyme activity. We also confirmed that 6 species including Pseudomonas psychrotolerans showed ${\alpha}$-amylase activity, and 29 species including Burkholderia vietnamiensis showed cellulase activity. Microbacterium testaceum and 3 species showed resistance to Ampicillin, Kanamycin, Streptomycin, Gentamicin, Carbenicillin, and Erythromycin ($50{\mu}g/mL$). Using mealworm larvae (Tenebrio molitor L.) as a model for pathogenicity, we confirmed that 8 species including Staphylococcus xylosus had pathogenicity for mealworm larvae. Especially, Enterobacter hormaechei, Staphylococcus xylosus, and Staphylococcus hominis were reported as being pathogenic for humans. This research suggests that hygienic management of animal feed is essential because beneficial and harmful bacteria can inhabit animal feed differently during storage and distribution.

Drying Characteristics of Agricultural Products under Different Drying Methods: A Review

  • Lee, Seung Hyun;Park, Jeong Gil;Lee, Dong Young;Kandpal, Lalit Mohan;Cho, Byoung-Kwan;Hong, Soon-jung;Jun, Soojin
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.389-395
    • /
    • 2016
  • Purpose: Drying is one of the most widely used methods for preserving agricultural products or food. The main purpose of drying agricultural products is to reduce their water content for minimizing microbial spoilage and deterioration reaction during storage. Methods: Although numerous drying methods are successfully applied to dehydrate various agricultural products with little drying time, the final quality of dried samples in terms of appearance and shape cannot be guaranteed. Therefore, based on published literature, this review was conducted to study the drying characteristics of various agricultural products when different drying methods were applied. Results: An increase in the drying power of sources-for example, increase in hot air temperature or velocity, infrared or microwave power-and the combination of drying power levels can reduce the drying time of various agricultural products. In addition, energy efficiency in drying significantly relies on the compositions of the dried samples and drying conditions. Conclusions: The drying power source is the key factor to control entire drying process of different samples and final product quality. In addition, an appropriate drying method should be selected depending on the compositions of the agricultural products.