• Title/Summary/Keyword: Microbial population

Search Result 578, Processing Time 0.032 seconds

Evaluation of Soil Microbial Population of Paddy Fields in Gyeongnam Province Area (경남지역의 논토양에서 미생물의 다양성 평가)

  • Lee, Young-Han;Choi, Yong-Jo;Park, Sang-Ryeol;Lee, Seong-Tae;Son, Byoung-Gwan;Shon, Gil-Man
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.34 no.6
    • /
    • pp.387-393
    • /
    • 2001
  • To use as a fundamental data for the sustainable agriculture, which is nowadays a major trend to keep the productivity and conserve the environment, 487 paddy soil samples were collected from 21 regions of the Gyeongnam Province and analyzed the chemical characteristics and microbial population of the soil. The microbial population densities were bacteria $298{\times}10^5$($4{\sim}3000{\times}10^5$ range), fungi $63{\times}10^3$($2{\sim}441{\times}10^3$ range), actinomycetes $19{\times}10^5$($0.2{\sim}1250{\times}10^5$ range), Bacillus sp. $53{\times}10^4$($4{\sim}890{\times}10^4$ range) and Pseudomonas sp. $198{\times}10^4CFU\;g^{-1}$($4{\sim}1724{\times}10^4CFU\;g^{-1}$ range), respectively. The microbial populations of the soil were in general higher in southern area than in the northern area of the Gyeongnam Province. The average ratio of bacteria/fungi population was 473. As soil clay content increased, the populations of aerobic bacteria, actinomycetes and Pseudomonas sp. were remarkably decreased. The ratio of aerobic bacteria and fungi was 1554 in sandy loam and clay loam 1144, while Bacillus sp./fungi ratio was 11 in clay loam and 10 in loam. On the topographical differences, aerobic bacteria and Bacillus sp./fungi ratio were the higher in coastal plains than any other areas. The microbial population densities from different soil types were generally lower in ill-drained paddy field than those of other paddy field. The content of $P_2O_5$, K, Ca, $NO_3-N$ and EC in soil were positively correlated to the population densities of aerobic bacteria, actinomycetes, fungi, Bacillus sp. and Pseudomonas sp.. The soil organic matter and Mg content were also positively correlated to the population densities of aerobic bacteria, actinomycetes, fungi and Bacillus sp.

  • PDF

Seasonal Changed of Microbial Population in the Field Soil (계절에 따른 토양중 미생물의 밀도 변화)

  • Park, Dong-Jin;Lee, Sang-Hwa;Kim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.144-148
    • /
    • 1998
  • Soil microorganisms including bacteria, fungi, and actinomycetes were seasonally isolated at depths (0.5~2, $10{\pm}1$, $50{\pm}1cm$) of field. The frequency of microbial isolates was employed for the determination of microbial population (CFU/g dry soil) and distribution ratio (%) in soil. Both bacteria (24-fold) and actinomycetes (7-fold) exhibited the biggest change at the depth of $50{\pm}1cm$, whereas fungi showed the maximum (13-fold) at $10{\pm}1cm$. On the whole, the bacterial population was high in spring soil, fungi in winter, and actinomycetes in autumn. Soil microorganisms also exhibited the seasonal variation on their distribution ratio (%). The maximum distribution ratio (85.7%) of bacteria was observed at the depth of $50{\pm}1cm$ in spring, whereas bacteria showed the minimum (35.2%) at the depth of $10{\pm}1cm$ in spring. The maximum distribution ratio (23.0%) of fungi was found at the depth of $50{\pm}1cm$ in spring, whereas its minimum (0.5%) at the depth of $10{\pm}1cm$ in spring. Actinomycetes exhibited the maximum distribution ratio (45.2%) at the depth of $10{\pm}1cm$ in spring, whereas its minimum (12.2%) was showed at the depth of $50{\pm}1cm$ in spring.

  • PDF

Population Dynamics of Effective Microorganisms in Microbial Pesticides and Environmental-friendly Organic Materials According to Storing Period and Temperature (저장기간 및 저장온도에 따른 미생물농약 및 친환경 유기농자재 유효미생물의 밀도변동)

  • Kim, Yong-Ki;Hong, Sung-Jun;Jee, Hyung-Jin;Shim, Chang-Kee;Park, Jong-Ho;Han, Eun-Jung;An, Nan-Hee;Lee, Seong-Don;Yoo, Jae-Hong
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • To work out quality control methods of environmental-friendly organic materials (EFOMs), the reason and basis for EFOM-selection and farmer's favorite formulation type of EFOMs, etc were investigated on farmers who had been practicing environmental-friendly agriculture. EFOMs used were soil amendments, control agents of plant diseases and insect pests, plant growth promotion formulations, in turns. In EFOMs application time, 22.7% of farmers sprayed EFOMs without delay after they were bought, in other hand, 77.3% of farmers used EFOMs which had been bought and stored for some period. Microbial density on seventeen environmental-friendly microbial formulates (EFMFs) including microbial pesticides, a microbial fertilizer, and environmental-friendly organic materials was investigated at different storing temperature and shelf life. When the microbial density of EFMFs was investigated without delay after they were bought, all used microbial pesticides and a microbial fertilizer was confirmed to be optimal for the certified density but two of environmental-friendly organic materials was confirmed not to be optimal. When microbial density of 17 EFMFs were investigated after storing them for six months at $4^{\circ}C$, only one of 9 microbial pesticides was confirmed not to be optimal, the other hand four of seven environmental-friendly organic materials not to be optimal, which each of their microbial density was less than the certified density. Population dynamics of microbial agents was much more influenced in fluctuated temperature (room temperature) than in static temperature condition ($5^{\circ}C$ and $25^{\circ}C$). Shelf life of microbial agents according to microbial formulation type were high in granule type, liquid wettable type and liquid type in turns.

Effects of radon on soil microbial community and their growth

  • Lee, Kyu-Yeon;Park, Seon-Yeong;Kim, Chang-Gyun
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.29-35
    • /
    • 2020
  • The aim of this study was to estimate the microbial metabolic activity of indigenous soil microbes under the radon exposure with different intensity and times in the secured laboratory radon chamber. For this purpose, the soil microbes were collected from radon-contaminated site located in the G county, Korea. Thereafter, their metabolic activity was determined after the radon exposure of varying radon concentrations of 185, 1,400 and 14,000 Bq/㎥. The average depth variable concentrations of soil radon in the radon-contaminated site were 707, 860 and 1,185 Bq/㎥ from 0, 15, and 30 cm in deep, respectively. Simultaneously, the soil microbial culture was mainly composed of Bacillus sp., Brevibacillus sp., Lysinibacillus sp., and Paenibacillus sp. From the radon exposure test, higher or lower radiation intensities compared to the threshold level attributed the metabolic activity of mixed microbial consortium to be reduced, whereas the moderate radiation intensity (i.e. threshold level) induced it to the pinnacle point. It was decided that radon radiation could instigate the microbial metabolic activity depending on the radon levels while they were exposed, which could consequently address that the certain extent of threshold concentration present in the ecosystem relevant to microbial diversity and population density to be more proliferated.

Evaluation of Anti-Phytoplasma Properties of Surfactin and Tetracycline Towards Lime Witches' Broom Disease Using Real-Time PCR

  • Askari, N.;Jouzani, Gh. Salehi;Mousivand, M.;Nazari, A. Hagh;Abbasalizadeh, S.;Soheilivand, S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.81-88
    • /
    • 2011
  • The anti-phytoplasma activities of surfactin (derived from Iranian native Bacillus subtilis isolates) and tetracycline towards Candidatus "Phytoplasma aurantifolia", the agent of lime Witches' broom disease, were investigated. HPLC was used to quantify the surfactin production in four previously characterized native surfactin-producing strains, and the one producing the highest amount of surfactin (about 1,500 mg/l) was selected and cultivated following optimized production and extraction protocols. Different combinations of purified surfactin and commercial tetracycline were injected into artificially phytoplasmainfected Mexican lime seedlings using a syringe injection system. An absolute quantitative real-time PCR system was developed to monitor the phytoplasma population shifts in the lime phloem during 3 months following the injections. The results revealed that the injections of surfactin or tetracycline had a significant inhibitory effect on Candidatus "P. aurantifolia". However, the combined treatment with both surfactin and tetracycline (1:1) resulted in the highest inhibition due to a synergic effect, which suppressed the phytoplasma population from about $2{\times}10^5$ to less than 10 phytoplasma units/g plant tissue.

Effects of Diesel Oil on the Population and Activity of Soil Microbial Community (토양미생물군집의 개체수와 활성도에 미치는 경유의 영향)

  • Seo, Eun-Young;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.32 no.2
    • /
    • pp.163-171
    • /
    • 1994
  • The effects of diesel oil on the microbial community in sandy loam soil were investigated, and the effects of bioremediation which was performed to enhance the removal of diesel oil from soil were also measured. The residual percentage of diesel oil was about 50% after 16 week incubation period. The bioremediation treatment increased the removal rate at 60~95%. When the soil was contaminated with diesel oil, the direct bacterial count, length of fungal hyphae, aerobic heterotroph and hydrocarbon degrader were increased by 2~3 orders of magnitude. The bioremediation further increased these numbers 10 to 100-fold. There were no difinite patterns of change in fluorescein diacetate hydrolysis activity in bioremediation-untreated soil, but about 10 times of increase of activity was observed in bioremediation-treated soil. Similar change was occurred in soil dehydrogenase activity.

  • PDF

Microbial linguistics: perspectives and applications of microbial cell-to-cell communication

  • Mitchell, Robert J.;Lee, Sung-Kuk;Kim, Tae-Sung;Ghim, Cheol-Min
    • BMB Reports
    • /
    • v.44 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Inter-cellular communication via diffusible small molecules is a defining character not only of multicellular forms of life but also of single-celled organisms. A large number of bacterial genes are regulated by the change of chemical milieu mediated by the local population density of its own species or others. The cell density-dependent "autoinducer" molecules regulate the expression of those genes involved in genetic competence, biofilm formation and persistence, virulence, sporulation, bioluminescence, antibiotic production, and many others. Recent innovations in recombinant DNA technology and micro-/nano-fluidics systems render the genetic circuitry responsible for cell-to-cell communication feasible to and malleable via synthetic biological approaches. Here we review the current understanding of the molecular biology of bacterial intercellular communication and the novel experimental protocols and platforms used to investigate this phenomenon. A particular emphasis is given to the genetic regulatory circuits that provide the standard building blocks which constitute the syntax of the biochemical communication network. Thus, this review gives focus to the engineering principles necessary for rewiring bacterial chemo-communication for various applications, ranging from population-level gene expression control to the study of host-pathogen interactions.

Microbial Population of Foodborne Pathogens during Fermentation of Mulberry Wort (오디 발효액의 발효기간 동안 식중독 세균수의 변화)

  • Han, Sanghyun;Ryu, Song Hee;Park, Woonra;Lim, Euna;Kim, Se-Ri;Kim, Won-Il;Yun, Bohyun;Kim, Hyun-Ju;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.6
    • /
    • pp.458-464
    • /
    • 2016
  • Mulberry is considered a healthy food for antioxidants and many other beneficial nutrients. However, food safety concerns exist as this commodity scarcely passes through a sanitizing step due to the fragile nature of mulberry fruits. Fermented mulberry wort is one traditional way to utilize and preserve mulberries by mixing with sugars although hygienic practices are not often implemented. The purpose of this study was to investigate the fate of foodborne pathogens in fermented mulberry wort. Microbial population of inoculated E. coli in mulberry wort showed a decreasing pattern as the fermentation progressed. A quicker decrease was observed in the mulberry wort mixed with sugar at 1 to 0.8 ratio (w/w, mulberry: sugar) compared to 1 to 1 ratio, which could be due to the amount of acids generated during the fermentation process. When fully-fermented mulberry wort was contaminated with foodborne pathogens, they all decreased in population although their deceasing patterns varied depending on the species of tested bacteria. Steep deceases in population of inoculated foodborne pathogens were observed when the fermented wort was stored at $30^{\circ}C$ in comparisons to the other storage temperature, 5 and $20^{\circ}C$, regardless of bacterial species. This study necessitates the optimization of a sanitizing process during fermentation and storage of mulberry wort.

Survival and Growth Characteristics of Foodborne Pathogen in Romaine Lettuce (로메인 상추에서 병원성미생물의 생존 및 증식 특성)

  • Kim, Na-Ye Seul;Kim, Chae Rin;Kim, Da-Woon;Jeong, Myung-In;Oh, Kwang Kyo;Kim, Bo-Eun;Ryu, Jae Gee;Jung, Jieun;Jeon, Ik Sung;Ryu, Kyoung-Yul
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.6
    • /
    • pp.481-487
    • /
    • 2021
  • The purpose of this study was to provide safety management information by analyzing the survival and growth-related properties of foodborne pathogens from Romaine lettuce. After cultivating E. coli O157:H7 for 72 h on Romain lettuce via spray inoculation, the bacteria population increased by 2.0 log CFU/g from the initial population, confirming the possibility of survival and multiplication of the pathogen thereon. The study also revealed that there is no significant difference in the cultivation of E.coli O157:H7 after 72 h from inoculation on damaged and undamaged lettuce leaves. As a result of investigating distribution of E.coli O157:H7 on damaged lettuce leaves, it was found that the bacteria is unlikely to adhere on the smooth surface of undamaged leaves and, thus, results in a low population density, whereas the bacteria cluster on the rough surface of damaged leaves and easily enter through the damaged tissues. Furthermore, after 24 h of cultivation of the pathogenic microbe in the extract with concentrations of 10-100%, utilization of the lettuce extract by the pathogen was found to be 8.9 log CFU/mL E. coli O157:H7, 8.6 log CFU/mL L. monocytogenes, and 8.8 log CFU/mL P. carotovorum. The increase in the population of both the pathogenic microbe and foodborne pathogen reached over 4 log CFU/mL, implying the microbe can utilize the lettuce extract as a source of nutrition. Compared to the initial inoculation concentration in 0.1% lettuce extract, the final concentration has increased up to 2.7 log CFU/mL E. coli O157:H7, 1.3 log CFU/mL L. monocytogenes, and 2.9 log CFU/mL P. carotovorum. Accordingly, the study confirms that the minimal growth concentration of the pathogenic microbe is lower than 0.1% and that the pathogen possibly survive and multiply inside the lettuce leaves given the lettuce extract with concentration of 0.1% is consistently supplied through the damaged tissues.

Effect of Gamma Irradiation on the Microbial Safety and Biological Activities of Tuna Cooking Juices (감마선 조사에 따른 참치 자숙액의 위생화 및 기능성 변화 연구)

  • Byun, Myung-Woo
    • KSBB Journal
    • /
    • v.27 no.4
    • /
    • pp.222-226
    • /
    • 2012
  • In this study, the effect of gamma irradiation on the microbial contamination and biological activities of tuna cooking juices was investigated. Tuna cooking juice was by-produced during the canning processing, and had various functional components. But, it was shown that the tuna cooking juice was seriously contaminated. Gamma irradiation effectively reduced the microbial population in tuna cooking juice. Also, 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging activity, tyrosinse inhibitory activity, and ACE inhibitory activity of tuna cooking juices were all increased as a result of gamma irradiation. These results suggest that wasted tuna cooking juices can be used as a functional component in the food and cosmetic industries if the irradiation technology were applied.