Browse > Article
http://dx.doi.org/10.4014/jmb.1007.07047

Evaluation of Anti-Phytoplasma Properties of Surfactin and Tetracycline Towards Lime Witches' Broom Disease Using Real-Time PCR  

Askari, N. (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII))
Jouzani, Gh. Salehi (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII))
Mousivand, M. (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII))
Nazari, A. Hagh (Department of Agronomy and Plant Breeding, College of Agriculture, Zanjan University)
Abbasalizadeh, S. (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII))
Soheilivand, S. (Microbial Biotechnology and Biosafety Department, Agricultural Biotechnology Research Institute of Iran (ABRII))
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.1, 2011 , pp. 81-88 More about this Journal
Abstract
The anti-phytoplasma activities of surfactin (derived from Iranian native Bacillus subtilis isolates) and tetracycline towards Candidatus "Phytoplasma aurantifolia", the agent of lime Witches' broom disease, were investigated. HPLC was used to quantify the surfactin production in four previously characterized native surfactin-producing strains, and the one producing the highest amount of surfactin (about 1,500 mg/l) was selected and cultivated following optimized production and extraction protocols. Different combinations of purified surfactin and commercial tetracycline were injected into artificially phytoplasmainfected Mexican lime seedlings using a syringe injection system. An absolute quantitative real-time PCR system was developed to monitor the phytoplasma population shifts in the lime phloem during 3 months following the injections. The results revealed that the injections of surfactin or tetracycline had a significant inhibitory effect on Candidatus "P. aurantifolia". However, the combined treatment with both surfactin and tetracycline (1:1) resulted in the highest inhibition due to a synergic effect, which suppressed the phytoplasma population from about $2{\times}10^5$ to less than 10 phytoplasma units/g plant tissue.
Keywords
Bacillus subtilis; HPLC; phytoplasma; real-time PCR; surfactin; Witches' broom disease of lime;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Abdel-Mawgoud, A. M., M. M. Aboulwafa, and N. Hassouna. 2008. Optimization of surfactin production by Bacillus subtilis isolate BS5. Appl. Biochem. Biotechnol. 150: 305-325.   DOI   ScienceOn
2 Aldaghi, M., S. Massart, O. Dutrecq, A. Bertaccini, M. H. Jijakli, and P. Lepoivre. 2009. A simple and rapid protocol of crude DNA extraction from apple trees for PCR and real-time PCR detection of 'Candidatus Phytoplasma mali'. J. Virol. Methods 156: 96-101.   DOI
3 Alhudaib, K., Y. Arocha, M. Wilson, and P. Jones. 2009. Molecular identification, potential vectors and alternative hosts of the phytoplasma associated with a lime decline disease in Saudi Arabia. Crop Prot. 28: 13-18.   DOI   ScienceOn
4 Arocha, Y., B. Pinol, K. Acosta, R. Almeida, J. Devonshire, A. Van de Meene, E. Boa, and J. Lucas. 2009. Detection of phytoplasma and potyvirus pathogens in papaya (Carica papaya L) affected with 'Bunchy Top Symptom' (BTS) in eastern Cuba. Crop Prot. 28: 640-646.   DOI   ScienceOn
5 Vollenbroich, D., G. Pauli, M. Ozel, and J. Vater. 1997. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl. Environ. Microbiol. 63: 44-49.
6 Xu, Q., G. Tian, Z. Wang, F. Kong, Y. Li, and H. Wang. 2009. Molecular detection and variability of jujube witches'-broom phytoplasmas from different cultivars in various regions of China. Wei Sheng Wu Xue Bao 49:1510-1519.
7 Zhao, Y., Q. Sun, W. Wei, R. E. Davis, W. Wu, and Q. Liu. 2009. Candidatus phytoplasma tamaricis', a novel taxon discovered in witches'-broom-diseased salt cedar (Tamarix chinensis Lour). Int. J. Syst. Evol. Microbiol. 59: 2496-2504.   DOI   ScienceOn
8 Zreik, L., P. Carle, J. M. Bové, and M. Garnier. 1995. Characterization of the mycoplasma-like organism associated with witches'-broom disease of lime and proposition of a Candidatus taxon for the organism, "Candidatus phytoplasma aurantifolia". Int. J. Syst. Bacteriol. 45: 449-453.   DOI   ScienceOn
9 Zaim, M. and A. Samad. 1995. Association of phytoplasmas with a witches-broom disease of Withania somnifera (L) Dunal in India. Plant Sci. 109: 225-229.   DOI   ScienceOn
10 Kim, J. and N. Wang. 2009. Characterization of copy numbers of 16S rDNA and 16S rRNA of Candidatus Liberibacter asiaticus and the implication in detection in planta using quantitative PCR. BMC 2: 37.
11 Wei, Y., C. Lai, and J. Chang. 2007. Using Taguchi experimental design methods to optimize trace element composition for enhanced surfactin production by Bacillus subtilis ATCC 21332. Process Biochem. 42: 40-45.   DOI   ScienceOn
12 Whang, L. M., P. W. G. Liu, C. C. Ma, and S. S. Cheng. 2008. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater. 151: 155-163.   DOI   ScienceOn
13 Jung, H. Y., T. Sawayanagi, S. Kakizawa, H. Nishigawa, W. Wei, K. Oshima, et al. 2003. 'Candidatus phytoplasma ziziphi', a novel phytoplasma taxon associated with jujube witches'- broom disease. Int. J. Syst. Evol. Microbiol. 53: 1037-1041.   DOI   ScienceOn
14 Lim, J. H., B. K. Park, M. S. Kim, M. H. Hwang, M. H. Rhee, S. C. Park, and H. I. Yun. 2005. The anti-thrombotic activity of surfactins. J. Vet. Sci. 6: 353-355.
15 Mireles, J. R., A. Toguchi, and R. M. Harshey. 2001. Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: Surfactin inhibits biofilm formation. J. Bacteriol. 183: 5848-5854.   DOI   ScienceOn
16 Mohamadipour, M., M. Mousivand, Gh. Salehi Jouzani, and S. Abasalizadeh. 2009. Molecular and biochemical characterization of Iranian surfactin producing Bacillus subtilis isolates and evaluation of their biocontrol potential against Aspergillus flavus and Colletotrichum gleosporiodes. Can. J. Microbiol. 55: 395-404.   DOI   ScienceOn
17 Ishiie, T., Y. Doi, K. Yora, and H. Asuyama. 1967. Suppressive effects of antibiotics of tetracycline group on symptom development of mulberry dwarf disease. Ann. Phytopathol. Soc. Jpn. 33: 267-275.   DOI
18 Jones, P. 2002. Phytoplasma plant pathogens, pp. 126-139. In M. Waller, J. M. Lenne, and S. J. Waller (eds.). Plant Pathologists Pocketbook, Part 12. CAB International, Oxford University Press, USA.
19 Kim, S., J. Y. Kim, S. H. Kim, H. J. Bae, H. Yi, S. H. Yoon, et al. 2007. Surfactin from Bacillus subtilis displays antiproliferative effect via apoptosis induction, cell cycle arrest and survival signalling suppression. FEBS Lett. 581: 865-871.   DOI   ScienceOn
20 Ghosh, D. K., A. K. Das, S. Singh, S. J. Singh, and Y. A. Ahlawat. 1999. Occurrence of witches' broom, a new phytoplasma disease of acid lime (Citrus aurantifolia) in India. Plant Dis. 83: 302.
21 Griffiths, H. M., W. A. Sinclair, C. D. Smart, and R. E. Davis. 1999. The phytoplasma associated with ash yellows and lilac witches'-broom: 'Candidatus phytoplasma fraxini'. Int. J. Syst. Bacteriol. 49: 1605-1614.   DOI   ScienceOn
22 Chiesa, S., S. Prati, G. Assante, D. Maffi, and P. A. Bianco. 2007. Activity of synthetic and natural compounds for phytoplasma control. Bull. Insectol. 60: 313-314.
23 Gundersen, D. E., I. M. Lee, D. A. Schaff, N. A. Harrison, C. J. Chang, R. E. Davis, and D. T. Kingsbury. 1996. Genomic diversity and differentiation among phytoplasma strains in 16S rRNA groups I (aster yellows and related phytoplasmas) and III (X-disease and related phytoplasmas). Int. J. Syst. Bacteriol. 46: 64-75.   DOI   ScienceOn
24 Hsieh, F. C., M. C. Li, T. C. Lin, and S. S. Kao. 2004. Rapid detection and characterization of surfactin-producing Bacillus subtilis and closely related species based on PCR. Current Microbiol. 49: 186-191.
25 Navratil, M., D. Safarova, P. Valova, J. Franova, and M. Simkova. 2009. Phytoplasma associated with witches'-broom disease of Ulmus minor MILL in the Czech Republic: Electron microscopy and molecular characterization. Folia Microbiol. (Praha) 54: 37-42.   DOI   ScienceOn
26 Pagadoy, M., F. Peypoux, and J. Wallach. 2005. Solid-phase synthesis of surfactin, a powerful biosurfactant produced by Bacillus subtilis and of four analogues. Int. J. Peptide Res. Therap. 11: 195-202.   DOI   ScienceOn
27 Torres, E., E. Bertolini, M. Cambra, C. Monton, and M. P. Martin. 2005. Real-time PCR for simultaneous and quantitative detection of quarantine phytoplasmas from apple proliferation (16SrX) group. Mol. Cell. Probes 19: 334-340.   DOI   ScienceOn
28 Bove, J. M., L. Danet, K. Bananej, N. Hassanzadeh, M. Taghizadeh, M. Salehi, and M. Garnier. 2000. Witches' broom disease of lime (WBDL) in Iran. Proceeding of the 14th Conference of the International Organization of Citrus Virologists, Riverside, California. pp. 207-212.
29 Bertaccini, A. 2007. Phytoplasmas: Diversity, taxonomy, and epidemiology. Front. Biosci. 12: 673-689.   DOI   ScienceOn
30 Chung, B. N. and G. S. Choi. 2002. Elimination of aster yellows phytoplasma from Dendranthema grandiflorum by application of oxytetracycline as a foliar spray. Plant Pathol. J. 18: 93-97.   DOI
31 Davies, D. A., H. C. Lynch, and J. Varley. 2001. The application of foaming for the recovery of surfactin from Bacillus subtilis ATCC 21332 cultures. Enzyme Microb. Technol. 28: 346-354.   DOI   ScienceOn
32 Desai, J. D. and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61: 47-64.
33 Deng, S. J. and C. Hiruki. 1991. Genetic relatedness between two nonculturable mycoplasma-like organisms revealed by nucleic acid hybridyzation and polymerase chain reaction. Phytopathology 81: 1475-1479.   DOI
34 Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15.
35 Fleckenstein, E., C. C. Uphoff, and H. G. Drexler. 1994. Effective treatment of mycoplasma contamination in cell lines with enrofloxacin (Baytril). Leukemia 8: 1424-1434.
36 Garnier, M., L. Zreik, and J. M. Bove. 1991. Witches broom, a lethal mycoplasmal disease of lime in Sultanate of Oman and the United Arab Emirates. Plant Dis. 75: 546-551.   DOI