• Title/Summary/Keyword: Microbial metabolites

Search Result 170, Processing Time 0.028 seconds

Characterization of Antibacterial Strains against Kiwifruit Bacterial Canker Pathogen

  • Kim, Min-Jung;Chae, Dae-Han;Cho, Gyeongjun;Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.473-485
    • /
    • 2019
  • Kiwifruit (Actinidia spp.) is an economically important crop and a bacterial canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the most destructive disease in kiwifruit production. Therefore, prevent and control of the disease is a critical issue in kiwifruit industry worldwide. Unfortunately, there is no reliable control methods have been developed. Recently, interest in disease control using microbial agents is growing. However, kiwifruit microbiota and their roles in the disease control is mainly remaining unknown. In this study, we secured bacterial libraries from kiwifruit ecospheres (rhizosphere, endospere, and phyllosphere) and screened reliable biocontrol strains against Psa. As the results, Streptomyces racemochromogenes W1SF4, Streptomyces sp. W3SF9 and S. parvulus KPB2 were selected as anti-Psa agents from the libraries. The strains showed forcible antibacterial activity as well as exceptional colonization ability on rhizosphere or phyllosphere of kiwifruit. Genome analyses of the strains suggested that the strains may produce several anti-Psa secondary metabolites. Our results will contribute to develop biocontrol strains against the kiwifruit canker pathogen and the disease management strategies.

The impact of cancer cachexia on gut microbiota composition and short-chain fatty acid metabolism in a murine model

  • Seung Min Jeong;Eun-Ju Jin;Shibo Wei;Ju-Hyeon Bae;Yosep Ji;Yunju Jo;Jee-Heon Jeong;Se Jin Im;Dongryeol Ryu
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.404-409
    • /
    • 2023
  • This study investigates the relationship between cancer cachexia and the gut microbiota, focusing on the influence of cancer on microbial composition. Lewis lung cancer cell allografts were used to induce cachexia in mice, and body and muscle weight changes were monitored. Fecal samples were collected for targeted metabolomic analysis for short chain fatty acids and microbiome analysis. The cachexia group exhibited lower alpha diversity and distinct beta diversity in gut microbiota, compared to the control group. Differential abundance analysis revealed higher Bifidobacterium and Romboutsia, but lower Streptococcus abundance in the cachexia group. Additionally, lower proportions of acetate and butyrate were observed in the cachexia group. The study observed that the impact of cancer cachexia on gut microbiota and their generated metabolites was significant, indicating a host-to-gut microbiota axis.

Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease

  • Eun Yeong Lim;Eun-Ji Song;Hee Soon Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1111-1118
    • /
    • 2023
  • As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.

Effects of Protein Supply from Soyhulls and Wheat Bran on Ruminal Metabolism, Nutrient Digestion and Ruminal and Omasal Concentrations of Soluble Non-ammonia Nitrogen of Steers

  • Kim, Jeong-Hoon;Oh, Young-Kyoon;Kim, Kyoung-Hoon;Choi, Chang-Won;Hong, Seong-Koo;Seol, Yong-Joo;Kim, Do-Hyung;Ahn, Gyu-Chul;Song, Man-Kang;Park, Keun-Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.9
    • /
    • pp.1267-1278
    • /
    • 2009
  • Three beef steers fitted with permanent cannulae in the rumen and duodenum were used to determine the effects of protein supply from soyhulls (SH) and wheat bran (WB) on ruminal metabolism, blood metabolites, nitrogen metabolism, nutrient digestion and concentrations of soluble non-ammonia nitrogen (SNAN) in ruminal (RD) and omasal digesta (OD). In a 3${\times}$3 Latin square design, steers were offered rice straw and concentrates formulated either without (control) or with two brans to increase crude protein (CP) level (9 vs. 11% dietary DM for control and bran-based diets, respectively). The brans used were SH and WB that had similar CP contents but different ruminal CP degradability (52 vs. 80% CP for SH and WB, respectively) for evaluating the effects of protein degradability. Ruminal ammonia concentrations were higher for bran diets (p<0.01) than for the control, and for WB (p<0.001) compared to the SH diet. Similarly, microbial nitrogen and blood urea nitrogen were significantly increased (p<0.05) by bran and WB diets, respectively. Retained nitrogen tended (p<0.082) to be increased by SH compared with the WB diet. Intestinal and total tract CP digestion was enhanced by bran diets. In addition, bran diets tended (p<0.085) to increase intestinal starch digestion. Concentrations of SNAN fractions in RD and OD were higher (p<0.05) for bran diets than for the control, and for WB than for the SH diet. More rumendegraded protein supply resulting from a higher level and degradability of CP released from SH and WB enhanced ruminal microbial nitrogen synthesis and ruminal protein degradation. Thus, free amino acids, peptides and soluble proteins from microbial cells as well as degraded dietary protein may have contributed to increased SNAN concentrations in the rumen and, consequently, the omasum. These results indicate that protein supply from SH and WB, having a low level of protein (13 and 16%, respectively), could affect ruminal metabolism and nutrient digestion if inclusion level is relatively high (>20%).

Effects of early commercial milk supplement on the mucosal morphology, bacterial community and bacterial metabolites in jejunum of the pre- and post-weaning piglets

  • Hu, Ping;Niu, Qingyan;Zhu, Yizhi;Shi, Chao;Wang, Jing;Zhu, Weiyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.480-489
    • /
    • 2020
  • Objective: Sow milk (SM) may not be able to meet the piglet's nutritional needs in late lactation. Hence, this study was conducted to investigate the effects of early commercial milk (CM) supplement on the mucosal morphology, bacterial community and bacterial metabolites in jejunum of piglets. Methods: Ten litters of newborn piglets ([Yorkshire×Landrace]×Duroc) were randomly divided into 2 groups of 5 litters. The piglets in the control group were suckled by the sow (SM), while the piglets in the treatment group (CM supplement) were supplemented with a CM supplement along with suckling from d 4 to d 28 of age. Results: No significant differences were observed about jejunal mucosal morphology on d 28 and d 35 between two groups. On d 28, the activity of lactase in the jejunum was significantly decreased in the CM group, while the activity of sucrase and the ratio of maltase to lactase were significantly increased (p<0.05). On d 35, the activity of maltase in the jejunum was significantly increased in the CM group (p<0.05), and maltase to lactase ratio tended to increase in the CM group (p = 0.065). In addition, piglets in the CM group had a higher abundance of Clostridium XI, Tuicibater, and Moraxella in the jejunum on d 28, while the abundance of Lactobacillus was significantly increased on d 35 (p<0.05). Conclusion: The early CM supplement improved the maturation of the jejunum to some extent by enhancing the maltase and sucrase activities. Moreover, the early CM supplement could help maintain the homeostasis of internal environment in jejunum by increasing the microbial-derived metabolites.

Inhibition of Microbial Quorum Sensing Mediated Virulence Factors by Pestalotiopsis sydowiana

  • Parasuraman, Paramanantham;Devadatha, B;Sarma, V. Venkateswara;Ranganathan, Sampathkumar;Ampasala, Dinakara Rao;Reddy, Dhanasekhar;Kumavath, Ranjith;Kim, In-Won;Patel, Sanjay K.S.;Kalia, Vipin Chandra;Lee, Jung-Kul;Siddhardha, Busi
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.571-582
    • /
    • 2020
  • Quorum sensing (QS)-mediated infections cause severe diseases in human beings. The control of infectious diseases by inhibiting QS using antipathogenic drugs is a promising approach as antibiotics are proving inefficient in treating these diseases. Marine fungal (Pestalotiopsis sydowiana PPR) extract was found to possess effective antipathogenic characteristics. The minimum inhibitory concentration (MIC) of the fungal extract against test pathogen Pseudomonas aeruginosa PAO1 was 1,000 ㎍/ml. Sub-MIC concentrations (250 and 500 ㎍/ml) of fungal extract reduced QS-regulated virulence phenotypes such as the production of pyocyanin, chitinase, protease, elastase, and staphylolytic activity in P. aeruginosa PAO1 by 84.15%, 73.15%, 67.37%, 62.37%, and 33.65%, respectively. Moreover, it also reduced the production of exopolysaccharides (74.99%), rhamnolipids (68.01%), and alginate (54.98%), and inhibited the biofilm formation of the bacteria by 90.54%. In silico analysis revealed that the metabolite of P. sydowiana PPR binds to the bacterial QS receptor proteins (LasR and RhlR) similar to their respective natural signaling molecules. Cyclo(-Leu-Pro) (CLP) and 4-Hydroxyphenylacetamide (4-HPA) were identified as potent bioactive compounds among the metabolites of P. sydowiana PPR using in silico approaches. The MIC values of CLP and 4-HPA against P. aeruginosa PAO1 were determined as 250 and 125 ㎍/ml, respectively. All the antivirulence assays were conducted at sub-MIC concentrations of CLP (125 ㎍/ml) and 4-HPA (62.5 ㎍/ml), which resulted in marked reduction in all the investigated virulence factors. This was further supported by gene expression studies. The findings suggest that the metabolites of P. sydowiana PPR can be employed as promising QS inhibitors that target pathogenic bacteria.

Biodegradation Pathways of Polychlorinated Biphenyls by Soil Fungus Aspergillus niger (Polychlorinated Biphenyl의 토양 미생물 Aspergillus niger에 의한 생분해 경로)

  • Kim, Chang-Su;Lim, Do-Hyung;Keum, Young-Soo
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.1
    • /
    • pp.7-13
    • /
    • 2016
  • As of many organochlorine pesticides, polychlorinated biphenyls are ubiquitous organic contaminants, which can be found in the most environmental matrices. Their toxic effects include endocrinedisrupting activity. Most researches with these toxicants performed with mixtures of congeners, namely Aroclor and related study has been done in complex environmental matrix, rather than single biosystems or pure congeners. 5 congeners were synthesized and their fates in pure microbial culture (Aspergillus niger) were determined in this study. Among biphenyl and synthetic congeners, biphenyl, PCB-1 (2-chlorobiphenyl), and PCB-3 (4-chlorobiphenyl) were rapidly transformed to hydrophilic metabolites, followed by PCB-38 (3,4,5-trichlorobiphenyl), while the degradation of PCB-126 (3,3',4,4',5-pentachlorobiphenyl) was not observed. The amounts of transformation for biphenyl, PCB-1, PCB-3, and PCB-38 were 65, 38, 52, and 2% respectively. The major metabolites of the above congeners were identified as mono- and di-hydroxy biphenyls, which are known to give adverse endocrinological effects.

Effect of oral spray with Lactobacillus on growth performance, intestinal development and microflora population of ducklings

  • Zhang, Qi;Jie, Yuchen;Zhou, Chuli;Wang, Leyun;Huang, Liang;Yang, Lin;Zhu, Yongwen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.3
    • /
    • pp.456-464
    • /
    • 2020
  • Objective: The aim of this study is to investigate the effect of oral spray with probiotics on the intestinal development and microflora colonization of hatched ducklings. Methods: In Exp. 1, an one-way factorial design was used to study the antibacterial activity of the probiotics and metabolites on Escherichia coli (E. coli) without antimicrobial resistance. There were four experimental groups including saline as control and Lactobacillus, Bacillus subtilis, combined Lactobacillus and Bacillus subtilis groups. In Exp. 2, 64-day-old ducklings were allotted to 2 treatments with 4 replicated pens. Birds in the control group were fed a basal diet supplemented with Lactobacillus fermentation in the feed whereas birds in the oral spray group were fed the basal diet and administrated Lactobacillus fermentation by oral spray way during the first week. Results: In Exp. 1, the antibacterial activities of probiotics and metabolites on E. coli were determined by the diameter of inhibition zone in order: Lactobacillus>combined Lactobacillus and Bacillus subtilis>Bacillus subtilis. Additionally, compared to E. coli without resistance, E. coli with resistance showed a smaller diameter of inhibition zones. In Exp. 2, compared to control feeding group, oral spray group increased (p<0.05) the final body weight at d 21 and average daily gain for d 1-21 and the absolute weight of the jejunum, ileum and total intestine tract as well as cecum Lactobacillus amount at d 21. Conclusion: Lactobacillus exhibited a lower antibacterial activity on E. coli with resistance than E. coli without resistance. Oral spray with Lactobacillus fermentation during the first week of could improve the intestinal development, morphological structure, and microbial balance to promote growth performance of ducklings from hatch to 21 d of age.

Identification of a Bioactive Compound, Violacein, from Microbulbifer sp. Isolated from a Marine Sponge Hymeniacidon sinapium on the West Coast of Korea (한국 서해안에 서식하는 주황해변해면에서 분리된 해양세균 Microbulbifer sp.으로부터 생리활성물질 비올라세인의 규명)

  • Won, Nam-Il;Lee, Ga-Eun;Ko, Keebeom;Oh, Dong-Chan;Na, Yang Ho;Park, Jin-Sook
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.124-132
    • /
    • 2017
  • Microbial secondary metabolites of marine organisms are regarded as major sources of structurally and biologically novel compounds with numerous potential uses. Sponge-microbe associations are among the most interesting sources for exploring bioactive compounds. In this study, the bacterial strain Microbulbifer sp. (127CP7-12) was isolated from the Asian marine sponge Hymeniacidon sinapium collected at an intertidal zone on the west coast of Korea. Cultured bacteria produced a violet pigment, and optimal culture conditions for violet pigment production were investigated. Maximum production of the violet pigment from the strain culture was observed under the conditions of $25^{\circ}C$, pH 6.0, and 3% NaCl. Acetone provided better extraction of the pigment from fermented broth compared with ethanol and methanol. The proposed structure of the major component in the extracted crude pigment was determined via high-performance liquid chromatography, nuclear magnetic resonance, mass spectrometry, and UV spectra analyses, which showed that the metabolite was the promising bioactive compound violacein. This study describes the examination of marine bioactive materials from microbe-engaged metabolites and the ecological implications of the sponge-microbe association in a changing ocean.

Biotransformation of natural polyacetylene in red ginseng by Chaetomium globosum

  • Wang, Bang-Yan;Yang, Xue-Qiong;Hu, Ming;Shi, Li-Jiao;Yin, Hai-Yue;Wu, Ya-Mei;Yang, Ya-Bin;Zhou, Hao;Ding, Zhong-Tao
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.770-774
    • /
    • 2020
  • Background: Fermentation has been shown to improve the biological properties of plants and herbs. Specifically, fermentation causes decomposition and/or biotransformation of active metabolites into high-value products. Polyacetylenes are a class of polyketides with a pleiotropic profile of bioactivity. Methods: Column chromatography was used to isolate compounds, and extensive NMR experiments were used to determine their structures. The transformation of polyacetylene in red ginseng (RG) and the production of cazaldehyde B induced by the extract of RG were identified by TLC and HPLC analyses. Results: A new metabolite was isolated from RG fermented by Chaetomium globosum, and this new metabolite can be obtained by the biotransformation of polyacetylene in RG. Panaxytriol was found to exhibit the highest antifungal activity against C. globosum compared with other major ingredients in RG. The fungus C. globosum cultured in RG extract can metabolize panaxytriol to Metabolite A to survive, with no antifungal activity against itself. Metabolites A and B showed obvious inhibition against NO production, with ratios of 42.75 ± 1.60 and 63.95 ± 1.45% at 50 µM, respectively. A higher inhibitory rate on NO production was observed for Metabolite B than for a positive drug. Conclusion: Metabolite A is a rare example of natural polyacetylene biotransformation by microbial fermentation. This biotransformation only occurred in fermented RG. The extract of RG also stimulated the production of a new natural product, cazaldehyde B, from C. globosum. The lactone in Metabolite A can decrease the cytotoxicity, which was deemed to be the intrinsic activity of polyacetylene in ginseng.