Browse > Article
http://dx.doi.org/10.4014/mbl.1702.02002

Identification of a Bioactive Compound, Violacein, from Microbulbifer sp. Isolated from a Marine Sponge Hymeniacidon sinapium on the West Coast of Korea  

Won, Nam-Il (Water Resources Research Center, K-water Institute)
Lee, Ga-Eun (Department of Bioscience and Biotechnology, Hannam University)
Ko, Keebeom (Natural Products Research Institute, College of Pharmacy, Seoul National University)
Oh, Dong-Chan (Natural Products Research Institute, College of Pharmacy, Seoul National University)
Na, Yang Ho (Department of Advanced Materials, Hannam University)
Park, Jin-Sook (Department of Bioscience and Biotechnology, Hannam University)
Publication Information
Microbiology and Biotechnology Letters / v.45, no.2, 2017 , pp. 124-132 More about this Journal
Abstract
Microbial secondary metabolites of marine organisms are regarded as major sources of structurally and biologically novel compounds with numerous potential uses. Sponge-microbe associations are among the most interesting sources for exploring bioactive compounds. In this study, the bacterial strain Microbulbifer sp. (127CP7-12) was isolated from the Asian marine sponge Hymeniacidon sinapium collected at an intertidal zone on the west coast of Korea. Cultured bacteria produced a violet pigment, and optimal culture conditions for violet pigment production were investigated. Maximum production of the violet pigment from the strain culture was observed under the conditions of $25^{\circ}C$, pH 6.0, and 3% NaCl. Acetone provided better extraction of the pigment from fermented broth compared with ethanol and methanol. The proposed structure of the major component in the extracted crude pigment was determined via high-performance liquid chromatography, nuclear magnetic resonance, mass spectrometry, and UV spectra analyses, which showed that the metabolite was the promising bioactive compound violacein. This study describes the examination of marine bioactive materials from microbe-engaged metabolites and the ecological implications of the sponge-microbe association in a changing ocean.
Keywords
Marine sponge; bacterial production; violacein; violet pigment; Korean waters;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Laport MS, Santos OC, Muricy G. 2009. Marine sponges: potential sources of new antimicrobial drugs. Curr. Pharm. Biotechnol. 10: 86-105.   DOI
2 El-Shitany NA, Shaala LA, Abbas AT, Abdel-Dayem UA, Azhar EI, Ali SS, et al. 2015. Evaluation of the anti-inflammatory, antioxidant and immunomodulatory effects of the organic extract of the red sea marine sponge xestospongia testudinaria against carrageenan induced rat paw inflammation. PLoS One 10: e0138917.   DOI
3 Li Z. 2009. Advances in marine microbial symbionts in the china sea and related pharmaceutical metabolites. Marine Drugs 7: 113-129.   DOI
4 Matz C, Kjelleberg S. 2005. Off the hook--how bacteria survive protozoan grazing. Trends Microbiol. 13: 302-307.   DOI
5 Matz C, Webb JS, Schupp PJ, Phang SY, Penesyan A, Egan S, et al. 2008. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS One 3: e2744.   DOI
6 Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. 2007. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5: e77.   DOI
7 Seshadri R, Kravitz SA, Smarr L, Gilna P, Frazier M. 2007. CAMERA: a community resource for metagenomics. PLoS Biology 5: e75.   DOI
8 Park MH, Sim CJ, Baek J, Min GS. 2007. Identification of genes suitable for DNA barcoding of morphologically indistinguishable Korean Halichondriidae sponges. Mol. Cells 23: 220-227.
9 Hoshino S, Saito DS, Fujita T. 2008. Contrasting genetic structure of two Pacific Hymeniacidon species. Hydrobiologia 603: 313-326.   DOI
10 Fuller T, Hughey J. 2013. Molecular investigation of the invasive sponge Hymeniacidon sinapium (de Laubenfels, 1930) in Elkhorn Slough, California. Aquatic Invasions 8: 59-66.   DOI
11 Moran XAG, Alonso-Saez L, Nogueira E, Ducklow HW, Gonzalez N, Lopez-Urrutia A, et al. 2015. Presented at the Proc. R. Soc. B.
12 Halpern BS, Walbridge S, Selkoe KA, Kappel CV, Micheli F, D'Agrosa C, et al. 2008. A global map of human impact on marine ecosystems. Science 319: 948-952.   DOI
13 Belkin IM. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography 81: 207-213.   DOI
14 Poloczanska ES, Brown CJ, Sydeman WJ, Kiessling W, Schoeman DS, Moore PJ, et al. 2013. Global imprint of climate change on marine life. Nature Climate Change 3: 919-925.   DOI
15 Barton AD, Irwin AJ, Finkel ZV, Stock CA. 2016. Anthropogenic climate change drives shift and shuffle in North Atlantic phytoplankton communities. Proceedings of the National Academy of Sciences 113: 2964-2969.   DOI
16 Dias DA, Urban S, Roessner U. 2012. A historical overview of natural products in drug discovery. Metabolites 2: 303-336.   DOI
17 Harvey AL, Edrada-Ebel R, Quinn RJ. 2015. The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews. Drug Discovery 14: 111-129.   DOI
18 D'Orazio N, Gammone MA, Gemello E, De Girolamo M, Cusenza S, Riccioni G. 2012. Marine bioactives: pharmacological properties and potential applications against inflammatory diseases. Marine Drugs 10: 812-833.   DOI
19 Choi SY, Kim S, Lyuck S, Kim SB, Mitchell RJ. 2015. High-level production of violacein by the newly isolated Duganella violaceinigra str. NI28 and its impact on Staphylococcus aureus. Scientific Reports 5: 15598.   DOI
20 Skropeta D, Wei L. 2014. Recent advances in deep-sea natural products. Natural Product Reports 31: 999-1025.   DOI
21 Wakabayashi M, Sakatoku A, Noda F, Noda M, Tanaka D, Nakamura S. 2012. Isolation and characterization of Microbulbifer species 6532A degrading seaweed thalli to single cell detritus particles. Biodegradation 23: 93-105.   DOI
22 Jeong J-B, Park J-S. 2012. Seasonal differences of bacterial communities associated with the marine sponge, hymeniacidon sinapium. The Korean J. Microbiol. 48: 262-269.   DOI
23 Yang LH, Xiong H, Lee OO, Qi SH, Qian PY. 2007. Effect of agitation on violacein production in Pseudoalteromonas luteoviolacea isolated from a marine sponge. Lett. Appl. Microbiol. 44: 625-630.   DOI
24 Ventosa A, Marquez MC, Ruiz-Berraquero F, Kocur M. 1990. Salinicoccus roseus gen. nov., sp. nov., a New Moderately Halophilic Gram-Positive Coccus. Syst. Appl. Microbiol. 13: 29-33.   DOI
25 Rettori D, Duran N. 1998. Production, extraction and purificationof violacein: an antibiotic pigment producedby Chromobacterium violaceum. World J. Microbiol. Biotechnol. 14: 685-688.   DOI
26 Goodwin C, Rodolfo-Metalpa R, Picton B, Hall-Spencer JM. 2014. Effects of ocean acidification on sponge communities. Mar. Ecol. 35: 41-49.   DOI
27 Nakamura Y, Sawada T, Morita Y, Tamiya E. 2002. Isolation of a psychrotrophic bacterium from the organic residue of a water tank keeping rainbow trout and antibacterial effect of violet pigment produced from the strain. Biochem. Eng. J. 12: 79-86.   DOI
28 Yoon JH, Kim H, Kang KH, Oh TK, Park YH. 2003. Transfer of Pseudomonas elongata Humm 1946 to the genus Microbulbifer as Microbulbifer elongatus comb. nov. Int. J. Syst. Evol. Microbiol. 53: 1357-1361.   DOI
29 Webster NS, Cobb RE, Negri AP. 2008. Temperature thresholds for bacterial symbiosis with a sponge. The ISME J. 2: 830-842.   DOI
30 Das S, Mangwani N. 2015. Ocean acidification and marine microorganisms: responses and consequences. Oceanologia 57: 349-361.   DOI